STYLER 项目使用教程
1. 项目目录结构及介绍
STYLER/
├── audio/
├── data/
├── deepspeaker/
├── figs/
├── hifigan/
├── text/
├── transformer/
├── .gitignore
├── LICENSE
├── README.md
├── dataset.py
├── evaluate.py
├── hparams.py
├── loss.py
├── modules.py
├── optimizer.py
├── preprocess.py
├── preprocess_noisy.py
├── preprocess_refs.py
├── requirements.txt
├── styler.py
├── synthesize.py
├── train.py
└── utils.py
目录结构介绍
audio/
: 存放音频数据。data/
: 存放数据处理相关的脚本和资源。deepspeaker/
: 存放DeepSpeaker相关的模型和代码。figs/
: 存放项目相关的图表和图像。hifigan/
: 存放HiFi-GAN相关的模型和代码。text/
: 存放文本数据。transformer/
: 存放Transformer相关的模型和代码。.gitignore
: Git忽略文件配置。LICENSE
: 项目许可证文件。README.md
: 项目说明文档。dataset.py
: 数据集处理脚本。evaluate.py
: 模型评估脚本。hparams.py
: 配置参数文件。loss.py
: 损失函数定义。modules.py
: 模型模块定义。optimizer.py
: 优化器定义。preprocess.py
: 数据预处理脚本。preprocess_noisy.py
: 噪声数据预处理脚本。preprocess_refs.py
: 参考音频数据预处理脚本。requirements.txt
: 项目依赖库列表。styler.py
: 核心模型定义。synthesize.py
: 合成音频脚本。train.py
: 模型训练脚本。utils.py
: 工具函数定义。
2. 项目启动文件介绍
train.py
train.py
是项目的启动文件,用于训练STYLER模型。通过运行该脚本,可以启动模型的训练过程。
python3 train.py
synthesize.py
synthesize.py
是用于合成音频的启动文件。通过运行该脚本,可以使用训练好的模型生成音频。
python3 synthesize.py --ckpt CHECKPOINT_PATH
3. 项目的配置文件介绍
hparams.py
hparams.py
是项目的配置文件,包含了模型训练和合成过程中所需的各项参数。以下是一些关键配置项的介绍:
data_dir
: 数据集路径。noise_dir
: 噪声数据路径。ref_audio_dir
: 参考音频路径。preprocessed_path
: 预处理数据路径。speaker_embedder_dir
: 说话人嵌入模型路径。log_dir
: 日志文件路径。
通过修改 hparams.py
文件中的参数,可以调整模型的训练和合成行为。
# 示例配置项
data_dir = "path/to/data"
noise_dir = "path/to/noise"
ref_audio_dir = "path/to/ref_audio"
preprocessed_path = "path/to/preprocessed"
speaker_embedder_dir = "path/to/speaker_embedder"
log_dir = "path/to/logs"
以上是STYLER项目的基本使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些信息能帮助你更好地理解和使用该项目。