Zero-Shot Imitation 项目教程

Zero-Shot Imitation 项目教程

zeroshot-imitation[ICLR 2018] TensorFlow code for zero-shot visual imitation by self-supervised exploration项目地址:https://gitcode.com/gh_mirrors/ze/zeroshot-imitation

1. 项目的目录结构及介绍

zeroshot-imitation/
├── data/
│   └── ...
├── models/
│   └── ...
├── scripts/
│   └── ...
├── config/
│   └── ...
├── README.md
├── requirements.txt
└── main.py
  • data/: 存储项目所需的数据文件。
  • models/: 存储训练好的模型文件。
  • scripts/: 包含一些辅助脚本。
  • config/: 包含项目的配置文件。
  • README.md: 项目的说明文档。
  • requirements.txt: 项目依赖的Python包列表。
  • main.py: 项目的启动文件。

2. 项目的启动文件介绍

main.py 是项目的启动文件,负责初始化项目并启动主要功能。以下是 main.py 的基本结构:

import argparse
from config import load_config
from models import load_model
from data import load_data

def main(args):
    config = load_config(args.config)
    model = load_model(config)
    data = load_data(config)
    # 启动项目的主要功能
    # ...

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Zero-Shot Imitation")
    parser.add_argument("--config", type=str, required=True, help="Path to the config file")
    args = parser.parse_args()
    main(args)

3. 项目的配置文件介绍

配置文件通常位于 config/ 目录下,以 config.yaml 为例:

model:
  name: "zeroshot_imitation"
  parameters:
    learning_rate: 0.001
    batch_size: 32

data:
  path: "data/dataset.zip"
  format: "zip"

training:
  epochs: 100
  save_interval: 10
  • model: 定义模型的名称和参数。
  • data: 定义数据的路径和格式。
  • training: 定义训练的轮数和保存模型的间隔。

以上是 Zero-Shot Imitation 项目的基本教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!

zeroshot-imitation[ICLR 2018] TensorFlow code for zero-shot visual imitation by self-supervised exploration项目地址:https://gitcode.com/gh_mirrors/ze/zeroshot-imitation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

任铃冰Flourishing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值