Classy Classification 项目教程

Classy Classification 项目教程

classy-classification This repository contains an easy and intuitive approach to few-shot classification using sentence-transformers or spaCy models, or zero-shot classification with Huggingface. classy-classification 项目地址: https://gitcode.com/gh_mirrors/cl/classy-classification

1. 项目的目录结构及介绍

Classy Classification 项目的目录结构如下:

classy-classification/
├── classy_classification/
│   ├── __init__.py
│   ├── classifier.py
│   ├── pipeline.py
│   └── utils.py
├── tests/
│   ├── __init__.py
│   ├── test_classifier.py
│   └── test_pipeline.py
├── examples/
│   ├── example_spacy.py
│   ├── example_sentence_transformers.py
│   └── example_zero_shot.py
├── setup.py
├── README.md
├── LICENSE
└── requirements.txt

目录结构介绍

  • classy_classification/: 核心代码目录,包含项目的所有主要功能模块。

    • __init__.py: 初始化文件,用于导入模块。
    • classifier.py: 分类器实现文件,包含分类器的核心逻辑。
    • pipeline.py: 管道实现文件,用于处理数据流。
    • utils.py: 工具函数文件,包含一些辅助函数。
  • tests/: 测试代码目录,包含项目的所有测试用例。

    • __init__.py: 初始化文件,用于导入测试模块。
    • test_classifier.py: 分类器测试文件,包含分类器的测试用例。
    • test_pipeline.py: 管道测试文件,包含管道的测试用例。
  • examples/: 示例代码目录,包含项目的使用示例。

    • example_spacy.py: 使用 spaCy 模型的示例代码。
    • example_sentence_transformers.py: 使用 sentence-transformers 模型的示例代码。
    • example_zero_shot.py: 使用 zero-shot 分类的示例代码。
  • setup.py: 项目安装文件,用于配置项目的安装信息。

  • README.md: 项目说明文件,包含项目的介绍、安装方法和使用说明。

  • LICENSE: 项目许可证文件,包含项目的开源许可证信息。

  • requirements.txt: 项目依赖文件,包含项目运行所需的依赖库。

2. 项目的启动文件介绍

项目的启动文件是 examples/ 目录下的示例代码文件。这些文件展示了如何使用 Classy Classification 进行分类任务。以下是几个主要的启动文件:

  • example_spacy.py: 该文件展示了如何使用 spaCy 模型进行分类。通过加载 spaCy 模型并配置分类器,用户可以快速进行文本分类。

  • example_sentence_transformers.py: 该文件展示了如何使用 sentence-transformers 模型进行分类。通过加载 sentence-transformers 模型并配置分类器,用户可以进行高效的文本分类。

  • example_zero_shot.py: 该文件展示了如何使用 zero-shot 分类。通过配置 zero-shot 分类器,用户可以在没有大量标注数据的情况下进行分类。

3. 项目的配置文件介绍

项目的配置文件主要包括 setup.pyrequirements.txt

setup.py

setup.py 是项目的安装配置文件,用于配置项目的安装信息。以下是 setup.py 的主要内容:

from setuptools import setup, find_packages

setup(
    name='classy-classification',
    version='1.0.0',
    packages=find_packages(),
    install_requires=[
        'spacy',
        'sentence-transformers',
        'scikit-learn',
        'numpy',
        'pandas'
    ],
    author='David Berenstein',
    author_email='david.berenstein@example.com',
    description='A few-shot and zero-shot classification library',
    long_description=open('README.md').read(),
    long_description_content_type='text/markdown',
    license='MIT',
    url='https://github.com/davidberenstein1957/classy-classification',
    classifiers=[
        'Development Status :: 4 - Beta',
        'Intended Audience :: Developers',
        'License :: OSI Approved :: MIT License',
        'Programming Language :: Python :: 3',
        'Programming Language :: Python :: 3.7',
        'Programming Language :: Python :: 3.8',
        'Programming Language :: Python :: 3.9',
        'Programming Language :: Python :: 3.10',
    ],
)

requirements.txt

requirements.txt 是项目的依赖文件,列出了项目运行所需的依赖库。以下是 requirements.txt 的内容:

spacy
sentence-transformers
scikit-learn
numpy
pandas

通过安装这些依赖库,用户可以确保项目能够正常运行。


以上是 Classy Classification 项目的教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望这些内容能够帮助你更好地理解和使用该项目。

classy-classification This repository contains an easy and intuitive approach to few-shot classification using sentence-transformers or spaCy models, or zero-shot classification with Huggingface. classy-classification 项目地址: https://gitcode.com/gh_mirrors/cl/classy-classification

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶准鑫Natalie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值