Factorio 学习环境(FLE)使用教程
1. 项目介绍
Factorio 学习环境(FLE)是一个开源框架,用于在 Factorio 游戏中开发和评估大型语言模型(LLM)的智能体。Factorio 是一款流行的资源管理和模拟游戏,FLE 利用其开放的世界和复杂的任务来测试智能体的能力。该项目提供了两种设置模式:实验室模式(Lab-play)和开放模式(Open-play),分别用于不同阶段的智能体训练和评估。
2. 项目快速启动
以下是快速启动 FLE 的步骤:
环境准备
- 安装 Factorio(版本 1.1.110):从官方网站或 Steam 商店购买并安装。
- 安装 Docker:确保系统已安装 Docker 环境。
- 安装 Python 3.10 或更高版本。
克隆仓库
git clone https://github.com/JackHopkins/factorio-learning-environment.git
cd factorio-learning-environment
pip install -e .
安装依赖
pip install psycopg2 lupa
配置 Factorio 客户端
- 购买 Factorio 并降级到版本 1.1.110。
- 如果使用 Steam,取消勾选 Space Age DLC。
运行 Docker 服务器
sudo systemctl start docker
cd cluster/docker
docker build -t factorio .
cd ../local
docker compose -f docker-compose-1.yml up -d
配置数据库
创建 .env
文件,参考 .example.env
文件内容,并根据需要填写 API 密钥和数据库配置。
运行评估
运行开放模式或实验室模式的评估:
python eval/open/independent_runs/run.py --run_config=eval/open/independent_runs/run_config_example_open_play.json
或者:
python eval/open/independent_runs/run.py --run_config=eval/open/independent_runs/run_config_example_lab_play.json
3. 应用案例和最佳实践
使用 FLE 进行智能体开发和评估时,以下是一些最佳实践:
- 在实验室模式中,使用提供的结构化任务来测试智能体的短期技能和错误分析能力。
- 在开放模式中,观察智能体如何自动发现并实施自动化策略,例如电力钻探。
- 分析智能体在实施复杂自动化任务时的表现,例如电子电路制造。
4. 典型生态项目
Factorio 学习环境(FLE)是 Factorio 游戏生态中的一个项目,以下是几个与之相关的典型项目:
- FactorioMod:用于创建和分享 Factorio 游戏的模组。
- FactorioHelper:提供 Factorio 游戏的辅助工具和脚本。
- FactorioServerManager:用于管理和监控 Factorio 服务器的工具。
以上是 Factorio 学习环境的基本使用教程,希望对您有所帮助。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考