Factorio 学习环境(FLE)使用教程

Factorio 学习环境(FLE)使用教程

factorio-learning-environment A non-saturating, open-ended environment for evaluating LLMs in Factorio factorio-learning-environment 项目地址: https://gitcode.com/gh_mirrors/fa/factorio-learning-environment

1. 项目介绍

Factorio 学习环境(FLE)是一个开源框架,用于在 Factorio 游戏中开发和评估大型语言模型(LLM)的智能体。Factorio 是一款流行的资源管理和模拟游戏,FLE 利用其开放的世界和复杂的任务来测试智能体的能力。该项目提供了两种设置模式:实验室模式(Lab-play)和开放模式(Open-play),分别用于不同阶段的智能体训练和评估。

2. 项目快速启动

以下是快速启动 FLE 的步骤:

环境准备

  • 安装 Factorio(版本 1.1.110):从官方网站或 Steam 商店购买并安装。
  • 安装 Docker:确保系统已安装 Docker 环境。
  • 安装 Python 3.10 或更高版本。

克隆仓库

git clone https://github.com/JackHopkins/factorio-learning-environment.git
cd factorio-learning-environment
pip install -e .

安装依赖

pip install psycopg2 lupa

配置 Factorio 客户端

  • 购买 Factorio 并降级到版本 1.1.110。
  • 如果使用 Steam,取消勾选 Space Age DLC。

运行 Docker 服务器

sudo systemctl start docker
cd cluster/docker
docker build -t factorio .
cd ../local
docker compose -f docker-compose-1.yml up -d

配置数据库

创建 .env 文件,参考 .example.env 文件内容,并根据需要填写 API 密钥和数据库配置。

运行评估

运行开放模式或实验室模式的评估:

python eval/open/independent_runs/run.py --run_config=eval/open/independent_runs/run_config_example_open_play.json

或者:

python eval/open/independent_runs/run.py --run_config=eval/open/independent_runs/run_config_example_lab_play.json

3. 应用案例和最佳实践

使用 FLE 进行智能体开发和评估时,以下是一些最佳实践:

  • 在实验室模式中,使用提供的结构化任务来测试智能体的短期技能和错误分析能力。
  • 在开放模式中,观察智能体如何自动发现并实施自动化策略,例如电力钻探。
  • 分析智能体在实施复杂自动化任务时的表现,例如电子电路制造。

4. 典型生态项目

Factorio 学习环境(FLE)是 Factorio 游戏生态中的一个项目,以下是几个与之相关的典型项目:

  • FactorioMod:用于创建和分享 Factorio 游戏的模组。
  • FactorioHelper:提供 Factorio 游戏的辅助工具和脚本。
  • FactorioServerManager:用于管理和监控 Factorio 服务器的工具。

以上是 Factorio 学习环境的基本使用教程,希望对您有所帮助。

factorio-learning-environment A non-saturating, open-ended environment for evaluating LLMs in Factorio factorio-learning-environment 项目地址: https://gitcode.com/gh_mirrors/fa/factorio-learning-environment

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶准鑫Natalie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值