DreamScene4D项目安装与配置指南

DreamScene4D项目安装与配置指南

dreamscene4d [NeurIPS 2024] DreamScene4D: Dynamic Multi-Object Scene Generation from Monocular Videos dreamscene4d 项目地址: https://gitcode.com/gh_mirrors/dr/dreamscene4d

1. 项目基础介绍

DreamScene4D 是一个动态多对象场景生成项目,它能够从单目视频中生成具有动态效果的场景。该项目由 Carnegie Mellon University 的 Wen-Hsuan Chu、Lei Ke 和 Katerina Fragkiadaki 开发。主要编程语言为 Python。

2. 项目使用的关键技术和框架

  • PyTorch: 用于深度学习模型的开发。
  • GMFlow: 用于光流估计的框架。
  • Gaussian Splatting: 用于生成高斯分布模型的技术。
  • Diffusers: 用于神经网络扩散过程的库。
  • nvdiffrast: 用于GPU加速的差异化渲染。

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 确保你的系统中已安装了 Python。
  • 安装 Conda,推荐用于创建和管理独立的 Python 环境。

安装步骤

步骤 1: 创建 Conda 环境

打开命令行,执行以下命令来创建一个名为 dreamscene4d 的 Conda 环境:

conda create -n dreamscene4d python=3.8.18
conda activate dreamscene4d
步骤 2: 安装 PyTorch

安装与项目兼容版本的 PyTorch。执行以下命令:

conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=11.8 -c pytorch -c nvidia
步骤 3: 安装项目依赖

安装项目所需的依赖库,执行以下命令:

pip install -r requirements.txt
步骤 4: 安装自定义的 Diffusers 和其他依赖
pip install ./diffusers
pip install ./simple-knn
pip install git+https://github.com/NVlabs/nvdiffrast/
步骤 5: 安装 GMFlow 和 Gaussian Splatting

首先,下载 GMFlow 的预训练权重,并将其放在 gmflow/pretrained/ 目录下。然后执行以下命令:

git submodule update --init --recursive
pip install ./diff-gaussian-rasterization

完成以上步骤后,你的 DreamScene4D 环境就配置完成了,可以开始使用项目的脚本进行操作了。

注意: 请确保每个步骤都按照指示正确执行,如果遇到任何错误,请仔细检查每个步骤的细节,并确保所有的依赖都已正确安装。

dreamscene4d [NeurIPS 2024] DreamScene4D: Dynamic Multi-Object Scene Generation from Monocular Videos dreamscene4d 项目地址: https://gitcode.com/gh_mirrors/dr/dreamscene4d

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶准鑫Natalie

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值