《Neural Body Fitting》项目启动与配置教程
neural_body_fitting 项目地址: https://gitcode.com/gh_mirrors/ne/neural_body_fitting
1. 项目目录结构及介绍
《Neural Body Fitting》项目的目录结构如下:
datasets/
:存放数据集的文件夹。demo/
:包含示例输入和输出文件夹,用于演示项目的推断功能。experiments/
:包含配置文件和实验状态的文件夹。helper_data/
:辅助数据文件夹,可能包含训练或推断过程中需要用到的额外数据。models/
:存放模型文件的文件夹。utils/
:包含项目所需的工具函数和模块。.gitignore
:定义哪些文件和文件夹应该被Git忽略。.gitmodules
:如果项目包含子模块,该文件用于管理子模块。README.md
:项目的说明文件。config.py
:项目的配置文件。license.txt
:项目的许可文件。requirements.txt
:项目依赖的Python包列表。run.py
:项目的启动文件。
2. 项目的启动文件介绍
项目的启动文件是run.py
,该文件负责处理项目的运行逻辑,包括训练、推断等操作。以下是一个使用run.py
进行推断的示例命令:
python run.py infer_segment_fit experiments/config/demo_up/ \
--inp_fp demo/up/input/\
--out_fp demo/up/output\
--visualise render
此命令会在浏览器中打开一个HTML文件,显示推断的结果。
3. 项目的配置文件介绍
项目的配置文件是config.py
,该文件用于存储项目运行时需要用到的配置参数。这些参数可能包括数据集路径、模型参数、训练超参数等。配置文件使得项目更灵活,便于调整和复现实验。
在config.py
中,你可以找到如下配置段:
# 数据集路径配置
dataset_path = 'path/to/dataset'
# 模型参数配置
model_params = {
'name': 'NeuralBodyFitting',
'weights': 'path/to/weights.h5',
}
# 训练超参数配置
train_params = {
'epochs': 50,
'batch_size': 32,
'learning_rate': 0.001,
}
在开始运行项目之前,确保所有配置参数都已正确设置。
neural_body_fitting 项目地址: https://gitcode.com/gh_mirrors/ne/neural_body_fitting
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考