BART: 计算磁共振成像工具箱使用教程

BART: 计算磁共振成像工具箱使用教程

项目地址:https://gitcode.com/gh_mirrors/ba/bart

1. 项目介绍

BART(Berkeley Advanced Reconstruction Toolbox)是一个用于计算磁共振成像(Computational Magnetic Resonance Imaging)的开源图像重建框架。该项目提供了多种重建算法,旨在为研究人员提供一个强大的工具,用于磁共振成像的研究和开发。BART工具箱是免费且开源的,适用于研究用途,但不适用于诊断用途。

主要特点

  • 开源: 基于BSD-3-Clause许可证,完全开源。
  • 多平台支持: 支持多种操作系统,包括Linux、Windows和macOS。
  • 丰富的算法库: 包含多种磁共振成像重建算法。
  • 易于扩展: 支持用户自定义算法和模块。

2. 项目快速启动

2.1 环境准备

在开始之前,请确保您的系统已经安装了以下依赖项:

  • Git
  • CMake
  • GCC/Clang
  • Python 3.x

2.2 克隆项目

首先,克隆BART项目到本地:

git clone https://github.com/mrirecon/bart.git
cd bart

2.3 编译项目

使用CMake进行项目编译:

mkdir build
cd build
cmake ..
make

2.4 运行示例

编译完成后,您可以运行一个简单的示例来验证安装是否成功:

./bart version

如果一切正常,您将看到BART的版本信息输出。

3. 应用案例和最佳实践

3.1 应用案例

BART工具箱广泛应用于磁共振成像的研究领域,包括但不限于:

  • 压缩感知成像: 通过压缩感知技术提高成像速度和质量。
  • 迭代重建算法: 使用迭代方法进行图像重建,提高图像的分辨率和清晰度。
  • 深度学习结合: 结合深度学习模型,进一步提升成像效果。

3.2 最佳实践

  • 数据预处理: 在进行图像重建之前,确保数据的预处理步骤(如去噪、归一化等)已经完成。
  • 参数调优: 根据具体的应用场景,调整重建算法的参数以获得最佳效果。
  • 模块化开发: 利用BART的模块化设计,开发和集成自定义算法。

4. 典型生态项目

4.1 Gadgetron

Gadgetron是一个开源的磁共振成像数据处理框架,与BART工具箱可以很好地集成,提供从数据采集到图像重建的完整解决方案。

4.2 ISMRMRD

ISMRMRD(International Society for Magnetic Resonance in Medicine Raw Data format)是一个用于磁共振成像数据的标准化格式,BART工具箱支持ISMRMRD格式的数据输入和输出,便于与其他工具和平台进行数据交换。

4.3 PyTorch

PyTorch是一个流行的深度学习框架,可以与BART结合使用,通过深度学习模型进一步提升磁共振成像的质量和效率。

通过以上模块的介绍,您应该已经对BART工具箱有了一个全面的了解,并能够快速上手使用。希望本教程对您的研究和开发工作有所帮助!

bart BART: Toolbox for Computational Magnetic Resonance Imaging bart 项目地址: https://gitcode.com/gh_mirrors/ba/bart

select distinct a.EMPI_ID, a.PATIENT_NO, a.MR_NO, a.PAT_NAME, a.PAT_SEX, a.PAT_AGE, a.PAT_PHONE_NO, b.DIAG_RESULT, a.ADMIT_DATE, a.DISCHARGE_DEPT_NAME, a.ATTEND_DR from BASIC_INFORMATION a join PA_DIAG b on a.MZZY_SERIES_NO=b.MZZY_SERIES_NO join EXAM_DESC_RESULT_CODE c on a.MZZY_SERIES_NO=c.MZZY_SERIES_NO join DRUG_INFO d on a.MZZY_SERIES_NO=d.MZZY_SERIES_NO join EMR_CONTENT e on a.MZZY_SERIES_NO=e.MZZY_SERIES_NO JOIN TEST_INFO A17 ON a.MZZY_SERIES_NO = A17.MZZY_SERIES_NO where a.PAT_AGE>='18' and (to_char(a.ADMIT_DATE,'YYYY-MM-DD') >= '2021-01-01') AND (b.DIAG_RESULT LIKE '%鼻咽癌%' or b.DIAG_RESULT LIKE '%鼻咽恶性肿瘤%' or b.DIAG_CODE LIKE '%C11/900%') and d.DRUG_NAME not in (select DRUG_NAME FROM DRUG_INFO WHERE DRUG_NAME like '卡培他滨') and b.DIAG_RESULT NOT IN (SELECT DIAG_RESULT FROM PA_DIAG WHERE DIAG_RESULT LIKE '%HIV阳性%') and b.DIAG_RESULT NOT IN (SELECT DIAG_RESULT FROM PA_DIAG WHERE DIAG_RESULT LIKE '%充血性心力衰竭%') AND to_char(( A17.TEST_DETAIL_ITEM_NAME = '中性粒细胞' AND A17.TEST_RESULT >= 1.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '血小板' AND A17.TEST_RESULT >= 100 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '血红蛋白' AND A17.TEST_RESULT >= 9 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '丙氨酸氨基转移酶' AND A17.TEST_RESULT <= 2.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '天门冬氨酸氨基转移酶' AND A17.TEST_RESULT <= 2.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '肌酐清除率' AND A17.TEST_RESULT > 51 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '肌酐' AND A17.TEST_RESULT <=1.5 ) OR ( A17.TEST_DETAIL_ITEM_NAME = '凝血酶原时间' AND A17.TEST_RESULT <= 1.5 ))语句哪里有问题
最新发布
06-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喻季福

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值