ROSEFusion: 实时快速相机运动下的密集重建开源项目

ROSEFusion: 实时快速相机运动下的密集重建开源项目

ROSEFusion [SIGGRAPH 2021] ROSEFusion is proposed to tackle the difficulties in fast-motion camera tracking using random optimization with depth information only. ROSEFusion 项目地址: https://gitcode.com/gh_mirrors/ro/ROSEFusion

1. 项目基础介绍及主要编程语言

ROSEFusion 是一个开源项目,旨在解决快速相机运动下的相机跟踪问题。该项目基于 SIGGRAPH 2021 论文《ROSEFusion: Random Optimization for Online Dense Reconstruction under Fast Camera Motion》开发。项目主要使用 C++ 和 CUDA 编程语言,结合 Pangolin、OpenCV 以及 Eigen 库进行开发。

2. 项目的核心功能

ROSEFusion 的核心功能是通过随机优化和深度信息进行在线的实时密集重建。主要特点如下:

  • 实时跟踪与重建:在快速相机运动情况下,能够以实时帧率进行稳健的相机跟踪和密集重建,无需闭环检测或全局姿态优化。
  • 深度信息利用:仅使用深度信息进行优化,无需额外的颜色信息,简化了处理流程。
  • 自适应性粒子群优化:采用粒子群优化算法,动态调整模型参数,适应快速运动的场景。

3. 项目最近更新的功能

最近的更新主要包含以下内容:

  • 性能优化:对代码进行了优化,提高了算法的执行效率和稳定性。
  • 配置文件更新:更新了配置文件,使得参数设置更加灵活和方便,支持更多数据集。
  • 环境兼容性改进:对不同的操作系统和GPU架构进行了兼容性改进,支持更多硬件环境。
  • 文档完善:更新了项目文档,增加了详细的安装和使用指南,帮助用户更好地理解和使用项目。

通过这些更新,ROSEFusion 进一步提升了其在快速相机运动下进行实时密集重建的能力,为相关领域的研究和开发提供了有力的工具。

ROSEFusion [SIGGRAPH 2021] ROSEFusion is proposed to tackle the difficulties in fast-motion camera tracking using random optimization with depth information only. ROSEFusion 项目地址: https://gitcode.com/gh_mirrors/ro/ROSEFusion

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喻季福

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值