Comfyui-MusePose 开源项目使用教程
项目地址:https://gitcode.com/gh_mirrors/co/Comfyui-MusePose
1. 项目介绍
Comfyui-MusePose 是一个图像到视频生成的框架,专门用于虚拟人物的控制信号生成,如姿态控制。该项目是 Muse 开源系列的一部分,旨在通过 MuseV 和 MuseTalk 等项目,实现虚拟人物的端到端生成,具备全身运动和交互能力。
2. 项目快速启动
2.1 环境准备
确保你已经安装了以下依赖:
- Python 3.x
- pip
- git
2.2 安装步骤
-
克隆项目仓库:
git clone https://github.com/TMElyralab/Comfyui-MusePose.git cd Comfyui-MusePose
-
安装依赖:
pip install -r requirements.txt pip install --no-cache-dir -U openmim mim install mmengine mim install "mmcv>=2.0.1" mim install "mmdet>=3.1.0" mim install "mmpose>=1.1.0"
-
下载预训练权重: 你可以手动下载预训练权重,并将其放置在
pretrained_weights
目录下,目录结构如下:/pretrained_weights/ ├── MusePose │ ├── denoising_unet.pth │ ├── motion_module.pth │ ├── pose_guider.pth │ └── reference_unet.pth ├── dwpose │ └── dw-ll_ucoco_384.pth ├── sd-image-variations-diffusers │ └── unet │ ├── config.json │ └── diffusion_pytorch_model.bin ├── image_encoder │ ├── config.json │ └── pytorch_model.bin └── sd-vae-ft-mse ├── config.json └── diffusion_pytorch_model.bin
-
启动 ComfyUI:
python -m comfyui
3. 应用案例和最佳实践
3.1 应用案例
虚拟人物生成:使用 Comfyui-MusePose 可以生成具有动态姿态的虚拟人物视频,适用于游戏、虚拟现实和动画制作等领域。
3.2 最佳实践
- 数据预处理:在生成视频之前,确保输入图像的质量和姿态数据的准确性。
- 模型调优:根据具体应用场景,调整模型的参数以获得最佳效果。
4. 典型生态项目
- MuseV:用于虚拟人物的语音生成。
- MuseTalk:用于虚拟人物的对话生成。
- ComfyUI:一个用于图像和视频生成的通用框架,支持多种插件和扩展。
通过这些项目的协同工作,可以实现虚拟人物的完整生成和交互能力。
Comfyui-MusePose 项目地址: https://gitcode.com/gh_mirrors/co/Comfyui-MusePose