深入理解D2L项目中的前向传播与反向传播机制

深入理解D2L项目中的前向传播与反向传播机制

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

引言

在深度学习领域,理解神经网络的前向传播(Forward Propagation)和反向传播(Backpropagation)机制至关重要。本文基于D2L项目中的相关内容,将深入探讨这两个核心概念及其在多层感知机(MLP)中的具体实现。

前向传播详解

前向传播是指从输入层到输出层依次计算并存储神经网络中间变量(包括输出)的过程。让我们以一个简单的单隐藏层MLP为例,逐步解析这个过程。

数学表达

  1. 输入到隐藏层的转换

    • 输入向量:$\mathbf{x}\in \mathbb{R}^d$
    • 权重矩阵:$\mathbf{W}^{(1)} \in \mathbb{R}^{h \times d}$
    • 中间变量:$\mathbf{z}= \mathbf{W}^{(1)} \mathbf{x}$
  2. 激活函数应用

    • 激活函数:$\phi$
    • 隐藏层输出:$\mathbf{h}= \phi (\mathbf{z})$
  3. 隐藏层到输出层的转换

    • 输出层权重:$\mathbf{W}^{(2)} \in \mathbb{R}^{q \times h}$
    • 输出向量:$\mathbf{o}= \mathbf{W}^{(2)} \mathbf{h}$
  4. 损失计算

    • 损失函数:$l$
    • 单个样本损失:$L = l(\mathbf{o}, y)$
    • 正则化项:$s = \frac{\lambda}{2} (|\mathbf{W}^{(1)}|\textrm{F}^2 + |\mathbf{W}^{(2)}|\textrm{F}^2)$
    • 总目标函数:$J = L + s$

计算图可视化

计算图是理解前向传播的有力工具,其中:

  • 方框表示变量
  • 圆圈表示运算符
  • 箭头表示数据流向(通常从左下角输入到右上角输出)

这种可视化方法清晰地展示了各操作和变量间的依赖关系。

反向传播机制

反向传播是计算神经网络参数梯度的方法,它按照与正向传播相反的顺序遍历网络,并应用微积分中的链式法则。

链式法则的应用

对于复合函数$\mathsf{Z}=g(f(\mathsf{X}))$,其导数为: $$\frac{\partial \mathsf{Z}}{\partial \mathsf{X}} = \textrm{prod}\left(\frac{\partial \mathsf{Z}}{\partial \mathsf{Y}}, \frac{\partial \mathsf{Y}}{\partial \mathsf{X}}\right)$$

这里的$\textrm{prod}$运算符根据张量的维度执行适当的乘法操作(如矩阵乘法或元素级乘法)。

梯度计算步骤

  1. 目标函数梯度分解: $$\frac{\partial J}{\partial L} = 1 \quad \text{和} \quad \frac{\partial J}{\partial s} = 1$$

  2. 输出层梯度: $$\frac{\partial J}{\partial \mathbf{o}} = \frac{\partial L}{\partial \mathbf{o}} \in \mathbb{R}^q$$

  3. 正则化项梯度: $$\frac{\partial s}{\partial \mathbf{W}^{(1)}} = \lambda \mathbf{W}^{(1)}$$ $$\frac{\partial s}{\partial \mathbf{W}^{(2)}} = \lambda \mathbf{W}^{(2)}$$

  4. 输出层参数梯度: $$\frac{\partial J}{\partial \mathbf{W}^{(2)}} = \frac{\partial J}{\partial \mathbf{o}} \mathbf{h}^\top + \lambda \mathbf{W}^{(2)}$$

  5. 隐藏层梯度传播

    • 隐藏层输出梯度:$\frac{\partial J}{\partial \mathbf{h}} = {\mathbf{W}^{(2)}^\top \frac{\partial J}{\partial \mathbf{o}}$
    • 激活前梯度:$\frac{\partial J}{\partial \mathbf{z}} = \frac{\partial J}{\partial \mathbf{h}} \odot \phi'\left(\mathbf{z}\right)$
    • 输入层参数梯度:$\frac{\partial J}{\partial \mathbf{W}^{(1)}} = \frac{\partial J}{\partial \mathbf{z}} \mathbf{x}^\top + \lambda \mathbf{W}^{(1)}$

训练过程中的关键点

在神经网络训练过程中,前向传播和反向传播相互依赖:

  1. 前向传播:计算并存储所有中间变量,为反向传播做准备
  2. 反向传播:利用存储的中间值计算梯度,避免重复计算

内存考虑

训练过程比预测需要更多内存,因为:

  • 必须保留所有中间变量直到反向传播完成
  • 内存需求与网络深度和批量大小成正比
  • 深层网络和大批量训练容易导致内存不足

总结

  1. 前向传播按顺序计算并存储计算图中定义的中间变量
  2. 反向传播按相反顺序计算并存储中间变量和参数的梯度
  3. 训练时两种传播相互依赖,且内存需求显著高于预测

理解这些基本原理对于深入掌握深度学习至关重要,特别是在需要自定义网络结构或优化算法时。通过计算图的可视化和逐步的数学推导,我们可以更清晰地把握神经网络的工作机制。

d2l-en d2l-ai/d2l-en: 是一个基于 Python 的深度学习教程,它使用了 SQLite 数据库存储数据。适合用于学习深度学习,特别是对于需要使用 Python 和 SQLite 数据库的场景。特点是深度学习教程、Python、SQLite 数据库。 d2l-en 项目地址: https://gitcode.com/gh_mirrors/d2/d2l-en

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汪宾其

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值