AWS AI/ML Workshop Korea 安装与配置指南

AWS AI/ML Workshop Korea 安装与配置指南

aws-ai-ml-workshop-kr A collection of localized (Korean) AWS AI/ML workshop materials for hands-on labs. aws-ai-ml-workshop-kr 项目地址: https://gitcode.com/gh_mirrors/aw/aws-ai-ml-workshop-kr

1. 项目基础介绍

本项目是一个开源项目,提供了AWS人工智能和机器学习工作坊的韩文材料,旨在帮助用户通过动手实验来学习和掌握AWS的AI/ML服务。该项目包含了生成式AI、SageMaker AI以及AWS Neuron等多个目录,涵盖了从基础入门到高级应用的多个方面。主要使用的编程语言为Python,同时也包含了Jupyter Notebook、Shell等语言编写的脚本。

2. 关键技术和框架

  • 生成式AI: 使用了AWS提供的生成式AI服务,包括模型部署和模型微调等。
  • SageMaker AI: 利用AWS SageMaker平台进行端到端的机器学习和深度学习实验。
  • AWS Neuron: 集成了AWS Neuron技术,用于优化和加速深度学习推理。

3. 安装和配置

准备工作

在开始安装之前,请确保您的系统中已经安装了以下环境和工具:

  • Python 3.x
  • pip(Python的包管理工具)
  • Jupyter Notebook或JupyterLab
  • AWS CLI(AWS命令行界面)

安装步骤

  1. 克隆项目

    首先,你需要从GitHub上克隆这个项目到你的本地环境。打开终端(或命令提示符),输入以下命令:

    git clone https://github.com/aws-samples/aws-ai-ml-workshop-kr.git
    
  2. 安装Python依赖

    进入项目目录,安装项目所需的所有Python依赖。你可以通过以下命令安装:

    cd aws-ai-ml-workshop-kr
    pip install -r requirements.txt
    

    如果requirements.txt文件不存在,则需要手动安装项目文档中提到的所有Python库。

  3. 配置AWS CLI

    为了使用AWS服务,你需要配置AWS CLI。按照以下步骤操作:

    • 打开AWS CLI配置文件(通常是~/.aws/config),添加你的AWS访问密钥(Access Key ID和Secret Access Key)以及默认区域(Region)。
    • 确保你已经创建了必要的IAM角色和策略,以允许你的密钥访问所需的AWS资源。
  4. 启动Jupyter Notebook

    进入项目目录后,使用以下命令启动Jupyter Notebook:

    jupyter notebook
    

    打开浏览器,你应该会看到Jupyter Notebook的界面,其中列出了项目中的所有IPython笔记本。

按照以上步骤,你应该能够成功安装和配置AWS AI/ML Workshop Korea项目,并且开始你的学习和实验。如果在安装过程中遇到任何问题,请查阅项目的README文件或相关文档以获取更多信息。

aws-ai-ml-workshop-kr A collection of localized (Korean) AWS AI/ML workshop materials for hands-on labs. aws-ai-ml-workshop-kr 项目地址: https://gitcode.com/gh_mirrors/aw/aws-ai-ml-workshop-kr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孟元毓Pandora

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值