AWS AI/ML Workshop Korea 安装与配置指南
1. 项目基础介绍
本项目是一个开源项目,提供了AWS人工智能和机器学习工作坊的韩文材料,旨在帮助用户通过动手实验来学习和掌握AWS的AI/ML服务。该项目包含了生成式AI、SageMaker AI以及AWS Neuron等多个目录,涵盖了从基础入门到高级应用的多个方面。主要使用的编程语言为Python,同时也包含了Jupyter Notebook、Shell等语言编写的脚本。
2. 关键技术和框架
- 生成式AI: 使用了AWS提供的生成式AI服务,包括模型部署和模型微调等。
- SageMaker AI: 利用AWS SageMaker平台进行端到端的机器学习和深度学习实验。
- AWS Neuron: 集成了AWS Neuron技术,用于优化和加速深度学习推理。
3. 安装和配置
准备工作
在开始安装之前,请确保您的系统中已经安装了以下环境和工具:
- Python 3.x
- pip(Python的包管理工具)
- Jupyter Notebook或JupyterLab
- AWS CLI(AWS命令行界面)
安装步骤
-
克隆项目
首先,你需要从GitHub上克隆这个项目到你的本地环境。打开终端(或命令提示符),输入以下命令:
git clone https://github.com/aws-samples/aws-ai-ml-workshop-kr.git
-
安装Python依赖
进入项目目录,安装项目所需的所有Python依赖。你可以通过以下命令安装:
cd aws-ai-ml-workshop-kr pip install -r requirements.txt
如果
requirements.txt
文件不存在,则需要手动安装项目文档中提到的所有Python库。 -
配置AWS CLI
为了使用AWS服务,你需要配置AWS CLI。按照以下步骤操作:
- 打开AWS CLI配置文件(通常是
~/.aws/config
),添加你的AWS访问密钥(Access Key ID和Secret Access Key)以及默认区域(Region)。 - 确保你已经创建了必要的IAM角色和策略,以允许你的密钥访问所需的AWS资源。
- 打开AWS CLI配置文件(通常是
-
启动Jupyter Notebook
进入项目目录后,使用以下命令启动Jupyter Notebook:
jupyter notebook
打开浏览器,你应该会看到Jupyter Notebook的界面,其中列出了项目中的所有IPython笔记本。
按照以上步骤,你应该能够成功安装和配置AWS AI/ML Workshop Korea项目,并且开始你的学习和实验。如果在安装过程中遇到任何问题,请查阅项目的README文件或相关文档以获取更多信息。