临床知识图谱(CKG)安装与配置指南
1. 项目基础介绍
临床知识图谱(Clinical Knowledge Graph,CKG)是一个开源平台,旨在分析蛋白质组学和临床数据,并从多个广泛使用的生物医学数据库中整合和挖掘知识。CKG 包含超过1600万个节点和2.2亿个关系,涵盖了实验数据、公共数据库和文献信息。该平台采用了最新的统计和机器学习算法,大幅提升了典型蛋白质组学工作流的分析和解释效率。
CKG 使用的主要编程语言是 Python。
2. 项目使用的关键技术和框架
- 图数据库:CKG 使用图数据库来存储和查询复杂的数据关系。
- 机器学习算法:用于数据分析,提供数据挖掘和预测功能。
- Docker:提供容器化部署,简化了安装和配置过程。
- 前端框架:例如 React 或 Vue.js(具体框架未在文档中明确提及,但常见于此类项目)。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保你的系统满足以下要求:
- 操作系统:支持 macOS、Linux。Windows 用户可以参考相关指南。
- 硬盘空间:至少80GB空闲空间。
- 安装 Git:如果尚未安装,请访问 Git 官方网站 下载并安装。
- 安装 Docker:如果尚未安装,请访问 Docker 官方网站 下载并安装。
安装步骤
-
克隆项目仓库
打开终端(或命令提示符),运行以下命令克隆 CKG 项目:
git clone https://github.com/MannLabs/CKG.git
这将在当前目录下创建一个名为 "CKG" 的新文件夹。
-
查看项目文档
在项目文件夹中,有一个名为
README.md
的文件,其中包含了项目的详细信息和安装指南。请仔细阅读。 -
安装依赖
在项目根目录下,使用以下命令安装项目依赖:
pip install -r requirements.txt
请确保已经安装了 Python 和 pip。
-
设置 Docker 容器
CKG 提供了 Docker 容器来简化安装过程。运行以下命令来构建 Docker 容器:
docker build -t ckg .
完成后,可以运行容器:
docker run -it ckg
-
启动 CKG 服务
在 Docker 容器内部,运行以下命令来启动 CKG 服务:
ckg-start
如果一切正常,CKG 服务将开始运行。
-
访问 CKG
通过浏览器访问
http://localhost:5000
(或者容器分配的端口),你应该能够看到 CKG 的界面。
注意事项
- 确保在安装过程中遵循所有提示和指导。
- 如果遇到问题,可以查看项目的
ISSUES
页面来找到可能的解决方案或提交新的问题。
以上就是 CKG 的详细安装和配置指南,按照以上步骤,即使是编程新手也应该能够成功安装并运行该项目。