Oort 开源项目教程

Oort 开源项目教程

Oort Oort: Efficient Federated Learning via Guided Participant Selection Oort 项目地址: https://gitcode.com/gh_mirrors/oo/Oort

1. 项目介绍

Oort 是一个用于高效联邦学习(Federated Learning)的项目,通过引导参与者选择(Guided Participant Selection)来优化训练过程。Oort 旨在提高联邦学习的效率,减少训练时间和资源消耗,同时保持模型的准确性。该项目在 OSDI '21 会议上获得了杰出成果奖,并已被整合到 FedScale 中,成为一个多样化的联邦学习基准。

2. 项目快速启动

安装步骤

  1. 克隆项目仓库

    git clone https://github.com/SymbioticLab/Oort.git
    cd Oort
    
  2. 安装依赖

    source install.sh
    

    该脚本会自动安装 Anaconda 包管理器和 CUDA 10.2。如果你需要不同的版本,请查看 install.sh 中的注释进行调整。

运行实验

  1. 训练脚本: 进入 training 目录,按照 README 文件中的说明运行训练脚本。

  2. 测试脚本: 进入 testing 目录,按照 README 文件中的说明运行测试脚本。

3. 应用案例和最佳实践

应用案例

Oort 在多个场景中展示了其优越的性能:

  • 时间-准确性优化:在联邦学习训练中,Oort 通过引导参与者选择,将训练时间缩短了 1.2 倍至 14.1 倍,同时提高了 1.3% 至 9.8% 的最终模型准确性。
  • 模型效率优化:Oort 通过自适应地平衡统计效率和系统效率,实现了接近最优的模型效率。
  • 鲁棒性测试:Oort 在不同参数和规模的实验中表现出色,显示出对异常值的鲁棒性。

最佳实践

  • 配置优化:根据具体需求调整配置文件,以获得最佳的训练和测试效果。
  • 数据管理:利用 Oort 的数据管理功能,确保数据的透明性和安全性。
  • 社区协作:参与 Oort 社区,获取最新的更新和支持,分享最佳实践。

4. 典型生态项目

FedScale

FedScale 是一个多样化的联邦学习基准,Oort 已被整合到其中,提供了更高效的联邦学习解决方案。FedScale 包含多种数据集和模型,适用于不同场景的联邦学习研究。

Oortech

Oortech 是一个去中心化的可验证云计算平台,利用全球资源(从数据中心到智能手机)来实现可信的人工智能应用。Oortech 提供了数据存储、计算和数据生成等服务,与 Oort 项目在联邦学习领域有潜在的协同作用。

通过这些生态项目,Oort 不仅在学术研究中表现出色,也在实际应用中展示了其强大的潜力和价值。

Oort Oort: Efficient Federated Learning via Guided Participant Selection Oort 项目地址: https://gitcode.com/gh_mirrors/oo/Oort

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

田发滔Gwendolyn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值