Oort 开源项目教程
1. 项目介绍
Oort 是一个用于高效联邦学习(Federated Learning)的项目,通过引导参与者选择(Guided Participant Selection)来优化训练过程。Oort 旨在提高联邦学习的效率,减少训练时间和资源消耗,同时保持模型的准确性。该项目在 OSDI '21 会议上获得了杰出成果奖,并已被整合到 FedScale 中,成为一个多样化的联邦学习基准。
2. 项目快速启动
安装步骤
-
克隆项目仓库:
git clone https://github.com/SymbioticLab/Oort.git cd Oort
-
安装依赖:
source install.sh
该脚本会自动安装 Anaconda 包管理器和 CUDA 10.2。如果你需要不同的版本,请查看
install.sh
中的注释进行调整。
运行实验
-
训练脚本: 进入
training
目录,按照 README 文件中的说明运行训练脚本。 -
测试脚本: 进入
testing
目录,按照 README 文件中的说明运行测试脚本。
3. 应用案例和最佳实践
应用案例
Oort 在多个场景中展示了其优越的性能:
- 时间-准确性优化:在联邦学习训练中,Oort 通过引导参与者选择,将训练时间缩短了 1.2 倍至 14.1 倍,同时提高了 1.3% 至 9.8% 的最终模型准确性。
- 模型效率优化:Oort 通过自适应地平衡统计效率和系统效率,实现了接近最优的模型效率。
- 鲁棒性测试:Oort 在不同参数和规模的实验中表现出色,显示出对异常值的鲁棒性。
最佳实践
- 配置优化:根据具体需求调整配置文件,以获得最佳的训练和测试效果。
- 数据管理:利用 Oort 的数据管理功能,确保数据的透明性和安全性。
- 社区协作:参与 Oort 社区,获取最新的更新和支持,分享最佳实践。
4. 典型生态项目
FedScale
FedScale 是一个多样化的联邦学习基准,Oort 已被整合到其中,提供了更高效的联邦学习解决方案。FedScale 包含多种数据集和模型,适用于不同场景的联邦学习研究。
Oortech
Oortech 是一个去中心化的可验证云计算平台,利用全球资源(从数据中心到智能手机)来实现可信的人工智能应用。Oortech 提供了数据存储、计算和数据生成等服务,与 Oort 项目在联邦学习领域有潜在的协同作用。
通过这些生态项目,Oort 不仅在学术研究中表现出色,也在实际应用中展示了其强大的潜力和价值。