DewarpNet: 单张图像文档去扭曲的开源项目

DewarpNet: 单张图像文档去扭曲的开源项目

DewarpNet 项目地址: https://gitcode.com/gh_mirrors/de/DewarpNet

1. 项目基础介绍和主要编程语言

DewarpNet 是一个由 Stony Brook University 的 CVLab 开发的开源项目,旨在通过单张图像实现文档的去扭曲。该项目基于深度学习技术,主要使用 Python 作为编程语言,并依赖于 PyTorch 深度学习框架进行模型的训练和推理。

2. 项目的核心功能

DewarpNet 的核心功能是通过其设计的神经网络模型,对文档图像进行三维和二维回归,从而恢复文档的原始平面状态。以下是该项目的几个关键特点:

  • 三维和二维回归网络:项目利用堆叠的三维和二维回归网络来处理图像,有效地对文档进行去扭曲处理。
  • 端到端的训练流程:从图像预处理到模型训练再到结果评估,DewarpNet 提供了一个完整的端到端解决方案。
  • 多种评价指标:项目支持包括图像质量评价指标(如 MS-SSIM)和 OCR 识别评价指标(如 编辑距离和字符错误率)在内的多种评估方式。

3. 项目最近更新的功能

根据项目最近更新的内容,以下是一些新增或改进的功能:

  • 评价图像的添加:为了帮助用户评估模型性能,项目添加了一些用于评估的图像。
  • OCR 评估细节的更新:项目提供了 OCR 评估的详细信息,包括没有使用模糊处理的 OCR 错误率。
  • 最终模型的发布:项目发布了用于 ICCV 论文中的最终模型,用户可以直接使用这些模型来复现论文中的结果。
  • 数据集下载脚本的更新:为了方便用户获取数据集,项目提供了新的数据集下载脚本。

通过这些更新,DewarpNet 进一步提升了其易用性和性能,为文档图像处理领域提供了一个强大的工具。

DewarpNet 项目地址: https://gitcode.com/gh_mirrors/de/DewarpNet

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

滕婉昀Gentle

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值