kumo-search 搜索引擎框架教程
search-legenddocs for search system and ai infra项目地址:https://gitcode.com/gh_mirrors/se/search-legend
项目介绍
kumo-search 是一个端到端搜索引擎框架,支持全文检索、倒排索引、正排索引、排序、缓存、索引分层、干预系统、特征收集、离线计算、存储系统等功能。该框架运行在 EA(Elastic automic infrastructure architecture) 平台上,支持在多机房、多集群上实现工程自动化、服务治理、实时数据、服务降级与容灾等功能。
项目快速启动
环境准备
确保你已经安装了以下软件:
- Python 3.x
- CMake
- GCC 或 Clang
克隆项目
git clone https://github.com/gottingen/search-legend.git
cd search-legend
安装依赖
pip install -r requirements.txt
编译项目
mkdir build
cd build
cmake ..
make
运行示例
./bin/search_example
应用案例和最佳实践
案例一:电商搜索引擎
在电商领域,kumo-search 可以用于构建商品搜索引擎,实现快速检索和推荐功能。通过集成倒排索引和排序算法,可以有效提升搜索的准确性和用户体验。
案例二:新闻聚合平台
新闻聚合平台可以使用 kumo-search 来实现新闻内容的快速检索和分类。通过实时更新索引和缓存机制,可以确保用户获取最新和最相关的新闻内容。
最佳实践
- 索引优化:定期对索引进行优化,确保搜索效率。
- 缓存策略:合理设置缓存策略,减少数据库访问压力。
- 监控与日志:实施监控和日志系统,及时发现和解决问题。
典型生态项目
项目一:collie
collie 是一个引用外部 header only library 的项目,如 jason、toml 等,统一管理这些库,方便集成和维护。
项目二:turbo hash log
turbo hash log 是一个容器类项目,提供字符串相关操作的高效实现,适用于需要高性能字符串处理的应用场景。
项目三:melon rpc通信
melon 是一个 RPC 通信项目,提供高效的远程调用功能,适用于分布式系统中的服务间通信。
项目四:alkaid 文件系统封装
alkaid 项目封装了本地文件、HDFS、S3 等文件系统的统一 API,简化文件操作的复杂性。
项目五:mizar 存储引擎内核
mizar 项目基于 RocksDB 和 ToplingDB 存储引擎内核,提供高效的存储解决方案,适用于大规模数据存储和处理。
通过这些生态项目的集成,kumo-search 可以构建一个完整的搜索引擎生态系统,满足不同场景的需求。
search-legenddocs for search system and ai infra项目地址:https://gitcode.com/gh_mirrors/se/search-legend