kumo-search 搜索引擎框架教程

kumo-search 搜索引擎框架教程

search-legenddocs for search system and ai infra项目地址:https://gitcode.com/gh_mirrors/se/search-legend

项目介绍

kumo-search 是一个端到端搜索引擎框架,支持全文检索、倒排索引、正排索引、排序、缓存、索引分层、干预系统、特征收集、离线计算、存储系统等功能。该框架运行在 EA(Elastic automic infrastructure architecture) 平台上,支持在多机房、多集群上实现工程自动化、服务治理、实时数据、服务降级与容灾等功能。

项目快速启动

环境准备

确保你已经安装了以下软件:

  • Python 3.x
  • CMake
  • GCC 或 Clang

克隆项目

git clone https://github.com/gottingen/search-legend.git
cd search-legend

安装依赖

pip install -r requirements.txt

编译项目

mkdir build
cd build
cmake ..
make

运行示例

./bin/search_example

应用案例和最佳实践

案例一:电商搜索引擎

在电商领域,kumo-search 可以用于构建商品搜索引擎,实现快速检索和推荐功能。通过集成倒排索引和排序算法,可以有效提升搜索的准确性和用户体验。

案例二:新闻聚合平台

新闻聚合平台可以使用 kumo-search 来实现新闻内容的快速检索和分类。通过实时更新索引和缓存机制,可以确保用户获取最新和最相关的新闻内容。

最佳实践

  • 索引优化:定期对索引进行优化,确保搜索效率。
  • 缓存策略:合理设置缓存策略,减少数据库访问压力。
  • 监控与日志:实施监控和日志系统,及时发现和解决问题。

典型生态项目

项目一:collie

collie 是一个引用外部 header only library 的项目,如 jason、toml 等,统一管理这些库,方便集成和维护。

项目二:turbo hash log

turbo hash log 是一个容器类项目,提供字符串相关操作的高效实现,适用于需要高性能字符串处理的应用场景。

项目三:melon rpc通信

melon 是一个 RPC 通信项目,提供高效的远程调用功能,适用于分布式系统中的服务间通信。

项目四:alkaid 文件系统封装

alkaid 项目封装了本地文件、HDFS、S3 等文件系统的统一 API,简化文件操作的复杂性。

项目五:mizar 存储引擎内核

mizar 项目基于 RocksDB 和 ToplingDB 存储引擎内核,提供高效的存储解决方案,适用于大规模数据存储和处理。

通过这些生态项目的集成,kumo-search 可以构建一个完整的搜索引擎生态系统,满足不同场景的需求。

search-legenddocs for search system and ai infra项目地址:https://gitcode.com/gh_mirrors/se/search-legend

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭蔷意Ward

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值