EasyPR 开源项目教程
EasyPR 项目地址: https://gitcode.com/gh_mirrors/eas/EasyPR
1. 项目介绍
EasyPR 是一个开源的中文车牌识别系统,其目标是成为一个简单、高效、准确的非限制场景(unconstrained situation)下的车牌识别库。该项目基于 OpenCV 开源库,支持中文车牌识别,具有较高的识别率。EasyPR 不仅提供了完整的源代码,还提供了训练数据和模型,方便开发者进行二次开发和优化。
主要特点
- 基于 OpenCV:所有代码都可以轻易获取,并且可以移植到 OpenCV 支持的所有平台。
- 中文识别:能够准确识别中文车牌,例如“苏EUK722”。
- 高识别率:在图片清晰的情况下,车牌检测与字符识别可以达到 80% 以上的精度。
2. 项目快速启动
环境准备
- 安装 OpenCV 3.0 及以上版本。
- 安装 C++ 编译器(如 GCC 或 MSVC)。
下载项目
git clone https://github.com/dreamxgn/EasyPR.git
cd EasyPR
编译项目
mkdir build
cd build
cmake ..
make
运行示例
./EasyPR
示例代码
以下是一个简单的示例代码,展示如何使用 EasyPR 进行车牌识别:
#include "easypr.h"
int main() {
CPlateRecognize pr;
pr.setResultShow(false);
pr.setDetectType(PR_DETECT_CMSER);
std::vector<CPlate> plateVec;
cv::Mat src = cv::imread("path_to_image.jpg");
int result = pr.plateRecognize(src, plateVec);
if (result == 0) {
for (auto& plate : plateVec) {
std::cout << "License: " << plate.getPlateStr() << std::endl;
}
} else {
std::cout << "Recognition failed." << std::endl;
}
return 0;
}
3. 应用案例和最佳实践
应用案例
- 智能停车场系统:EasyPR 可以用于自动识别进出车辆的车牌,实现无人值守的停车场管理。
- 交通监控系统:在交通监控摄像头中集成 EasyPR,可以实时识别违章车辆的车牌信息。
- 物流管理系统:在物流车辆进出仓库时,自动识别车牌信息,提高物流管理的效率。
最佳实践
- 数据增强:为了提高识别率,可以对训练数据进行数据增强,如旋转、缩放、添加噪声等。
- 模型优化:根据实际应用场景,调整模型的参数,如 SVM 和 ANN 的参数,以提高识别精度。
- 多平台部署:EasyPR 支持跨平台部署,可以根据需求将其部署到 Windows、Linux、Android 等平台。
4. 典型生态项目
EasyPR-DLL-CSharp
- 项目地址:https://github.com/zhang-can/EasyPR-DLL-CSharp
- 介绍:该项目将 EasyPR 封装为 DLL,方便在 C# 项目中调用,适用于需要集成车牌识别功能的 Windows 桌面应用。
EasyPR-Android
- 项目地址:https://github.com/linuxxx/EasyPR_Android
- 介绍:该项目将 EasyPR 移植到 Android 平台,可以在移动设备上实现车牌识别功能,适用于移动端的智能交通应用。
EasyPR-iOS
- 项目地址:https://github.com/zhoushiwei/EasyPR-iOS
- 介绍:该项目将 EasyPR 移植到 iOS 平台,可以在 iPhone 和 iPad 上实现车牌识别功能,适用于移动端的智能交通应用。
通过以上教程,您可以快速上手 EasyPR 项目,并将其应用于各种实际场景中。希望本教程对您有所帮助!