Jekyll Spaceship 使用指南

🚀 Jekyll Spaceship 使用指南

jekyll-spaceship🚀 A Jekyll plugin to provide powerful supports for table, mathjax, plantuml, mermaid, emoji, video, audio, youtube, vimeo, dailymotion, soundcloud, spotify, etc.项目地址:https://gitcode.com/gh_mirrors/je/jekyll-spaceship

项目介绍

🚀 Jekyll Spaceship 是一款专为 Jekyll 博客系统设计的强大插件,旨在为宇航员(即Jekyll用户)提供全面的支持,涵盖表格、MathJax、PlantUML、Mermaid 图表、Emoji、视频、音频以及如 YouTube、Vimeo、DailyMotion、SoundCloud 和 Spotify 等在线媒体资源的集成。它极大地丰富了Jekyll站点的内容表达能力,让静态站点同样能够拥有动态内容的展示力。

项目快速启动

要迅速启动并运行 Jekyll Spaceship,您需要按照以下步骤操作:

安装依赖

首先,确保您的环境中已经安装了Ruby >= 2.3.0。接着,在您的Jekyll项目中添加此插件。

  1. 打开您Jekyll项目的Gemfile,加入以下代码:

    gem 'jekyll-spaceship', group: :jekyll_plugins
    
  2. 在终端执行 bundle install 来安装插件。

配置Jekyll

在您的 _config.yml 文件中,激活该插件:

plugins:
  - jekyll-spaceship

示例使用

一旦配置完成,您可以立即开始利用Jekyll Spaceship的功能。例如,插入一个Markdown支持的表格:

| Column 1 | Column 2 |
|----------|----------|
| 数据1    | 数据2    |

或是在文本中使用Emoji,只需直接输入Emoji代码或名称即可自动转换。

应用案例与最佳实践

表格增强

使用Jekyll Spaceship,您可以创建更复杂的表格,包括自定义样式,无需额外HTML知识。

数学公式渲染

借助MathJax,轻松嵌入数学公式:

$$\sum_{n=1}^\infty \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$$
优雅地使用Emoji

在文本中随意使用Unicode Emoji或者其英文名,如:rocket:将自动转化为对应的图标。

典型生态项目

虽然Jekyll Spaceship本身就是一个独立的增强工具,但结合其他Jekyll主题和插件,可以构建出功能丰富的站点。例如,结合Jekyll Bootstrap可以让博客具备响应式布局,而与Tocer搭配,则能自动生成文章目录。


通过上述步骤,您现在应该对如何使用Jekyll Spaceship有了清晰的认识。从简单的元素增强到复杂内容的集成,这个插件都是提升Jekyll站点用户体验的得力助手。探索更多高级功能,访问官方GitHub仓库以获取完整文档和最新更新。

jekyll-spaceship🚀 A Jekyll plugin to provide powerful supports for table, mathjax, plantuml, mermaid, emoji, video, audio, youtube, vimeo, dailymotion, soundcloud, spotify, etc.项目地址:https://gitcode.com/gh_mirrors/je/jekyll-spaceship

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韩烨琰

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值