Scale-wise Distillation of Diffusion Models 教程

Scale-wise Distillation of Diffusion Models 教程

swd Scale-wise Distillation of Diffusion Models swd 项目地址: https://gitcode.com/gh_mirrors/swd/swd

1. 项目介绍

Scale-wise Distillation of Diffusion Models(SwD)是一种新颖的框架,用于通过在生成过程中逐步增加空间分辨率来加速扩散模型(DMs)。SwD 实现了显著的加速(2.5×至10×),同时保持或甚至提高图像质量。在人类评估中,SwD 表现出高度竞争力,并且通常超过基线。

2. 项目快速启动

以下是快速启动 SwD 的步骤,确保您已经安装了必要的依赖项。

# 安装 diffusers 和 peft
pip install -U diffusers
pip install -U peft

# 导入必要的库
import torch
from diffusers import StableDiffusion3Pipeline, FlowMatchLCMScheduler
from peft import PeftModel

# 加载预训练模型
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.float16)
pipe = pipe.to("cuda")

# 加载 SwD 模型
lora_path = 'yresearch/swd-large-6-steps'
pipe.transformer = PeftModel.from_pretrained(pipe.transformer, lora_path,).to("cuda")

# 设置 LCM 调度器
pipe.scheduler = FlowMatchLCMScheduler.from_config(pipe.scheduler.config, shift=1.0)

# 设置尺度因子
pipe.scheduler.set_scale_factors(scale_factors=[1.5, 2.0, 2.5, 3.0, 4.0], upscale_mode='bicubic')

# 生成图像
image = pipe("a cat reading a newspaper", guidance_scale=0.0, generator=torch.Generator().manual_seed(0), width=256, height=256).images[0]

3. 应用案例和最佳实践

  • 案例 1: 使用 SwD 生成高分辨率图像,同时保持与全分辨率模型相当的质量。
  • 案例 2: 在有限的计算预算内,使用 SwD 超越领先的蒸馏方法。

最佳实践:

  • 根据需要调整 scalessigmas 参数以优化生成过程。
  • 使用 LCM 调度器以获得更好的性能。

4. 典型生态项目

SwD 已经被集成到 diffusers 库中,可以与 LCM flow matching 调度器配合使用,进一步优化扩散模型。

# 升级到最新版本的 diffusers
pip install -U diffusers

以上就是关于 Scale-wise Distillation of Diffusion Models 的教程,希望对您有所帮助。

swd Scale-wise Distillation of Diffusion Models swd 项目地址: https://gitcode.com/gh_mirrors/swd/swd

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

符卿玺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值