Scale-wise Distillation of Diffusion Models 教程
swd Scale-wise Distillation of Diffusion Models 项目地址: https://gitcode.com/gh_mirrors/swd/swd
1. 项目介绍
Scale-wise Distillation of Diffusion Models(SwD)是一种新颖的框架,用于通过在生成过程中逐步增加空间分辨率来加速扩散模型(DMs)。SwD 实现了显著的加速(2.5×至10×),同时保持或甚至提高图像质量。在人类评估中,SwD 表现出高度竞争力,并且通常超过基线。
2. 项目快速启动
以下是快速启动 SwD 的步骤,确保您已经安装了必要的依赖项。
# 安装 diffusers 和 peft
pip install -U diffusers
pip install -U peft
# 导入必要的库
import torch
from diffusers import StableDiffusion3Pipeline, FlowMatchLCMScheduler
from peft import PeftModel
# 加载预训练模型
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# 加载 SwD 模型
lora_path = 'yresearch/swd-large-6-steps'
pipe.transformer = PeftModel.from_pretrained(pipe.transformer, lora_path,).to("cuda")
# 设置 LCM 调度器
pipe.scheduler = FlowMatchLCMScheduler.from_config(pipe.scheduler.config, shift=1.0)
# 设置尺度因子
pipe.scheduler.set_scale_factors(scale_factors=[1.5, 2.0, 2.5, 3.0, 4.0], upscale_mode='bicubic')
# 生成图像
image = pipe("a cat reading a newspaper", guidance_scale=0.0, generator=torch.Generator().manual_seed(0), width=256, height=256).images[0]
3. 应用案例和最佳实践
- 案例 1: 使用 SwD 生成高分辨率图像,同时保持与全分辨率模型相当的质量。
- 案例 2: 在有限的计算预算内,使用 SwD 超越领先的蒸馏方法。
最佳实践:
- 根据需要调整
scales
和sigmas
参数以优化生成过程。 - 使用 LCM 调度器以获得更好的性能。
4. 典型生态项目
SwD 已经被集成到 diffusers 库中,可以与 LCM flow matching 调度器配合使用,进一步优化扩散模型。
# 升级到最新版本的 diffusers
pip install -U diffusers
以上就是关于 Scale-wise Distillation of Diffusion Models 的教程,希望对您有所帮助。
swd Scale-wise Distillation of Diffusion Models 项目地址: https://gitcode.com/gh_mirrors/swd/swd
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考