SciDownl 开源项目使用教程
SciDownl项目地址:https://gitcode.com/gh_mirrors/sc/SciDownl
1. 项目介绍
SciDownl 是一个非官方的 API,用于通过 DOI、PMID 或标题从 SciHub 下载论文。该项目旨在简化从 SciHub 下载论文的过程,支持通过 DOI、PMID 或标题进行下载,并且易于更新最新的 SciHub 域名。此外,SciDownl 还支持使用代理进行下载,确保在不同网络环境下的可用性。
2. 项目快速启动
安装
你可以通过 pip 轻松安装 SciDownl:
pip3 install -U scidownl
或者从源代码安装:
git clone https://github.com/Tishacy/SciDownl.git
cd SciDownl
python3 setup.py install
使用
命令行工具
使用命令行工具下载论文:
# 通过 DOI 下载论文,文件名为论文标题
scidownl download --doi https://doi.org/10.1145/3375633
# 通过 PMID 下载论文,并指定输出路径
scidownl download --pmid 31395057 --out /paper/paper-1.pdf
# 通过标题下载论文
scidownl download --title "ImageNet Classification with Deep Convolutional Neural Networks" --out /paper/paper-1.pdf
# 使用代理下载论文
scidownl download --pmid 31395057 --out /paper/paper-1.pdf --proxy http=socks5://127.0.0.1:7890
Python 脚本
你也可以在 Python 脚本中使用 scihub_download
函数:
from scidownl import scihub_download
paper = "https://doi.org/10.1145/3375633"
paper_type = "doi"
out = "/paper/one_paper.pdf"
proxies = {
'http': 'socks5://127.0.0.1:7890'
}
scihub_download(paper, paper_type=paper_type, out=out, proxies=proxies)
3. 应用案例和最佳实践
应用案例
- 学术研究:研究人员可以使用 SciDownl 快速获取所需的论文,节省手动搜索和下载的时间。
- 教育资源:教师和学生可以使用 SciDownl 下载相关领域的论文,用于教学和学习。
- 数据分析:数据科学家可以使用 SciDownl 获取大量论文,进行文本挖掘和分析。
最佳实践
- 使用代理:在某些网络环境下,直接访问 SciHub 可能会受到限制。建议使用代理服务器来确保下载的顺利进行。
- 批量下载:如果你需要下载多篇论文,可以编写一个脚本,批量处理 DOI 列表,提高效率。
- 定期更新:SciHub 的域名可能会发生变化,建议定期更新 SciDownl 以获取最新的域名支持。
4. 典型生态项目
- SciHubEvo:一个用于自动化下载和管理 SciHub 论文的工具,支持批量下载和自动化管理。
- PaperDownloader:一个基于 Python 的论文下载工具,支持多种下载源,包括 SciHub。
- AcademicDownloader:一个用于学术资源下载的工具,支持多种学术数据库和下载方式。
通过这些生态项目,你可以进一步扩展 SciDownl 的功能,满足更复杂的下载需求。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考