RoboBrain:统一机器人脑模型助力抽象至具象的操作
项目介绍
RoboBrain 是一个基于多模态大型语言模型(MLLMs)的机器人操作脑模型。当前的多模态大型语言模型虽然在多种多模态环境中表现出色,但在机器人操作,特别是长周期操作任务中存在显著局限。RoboBrain 的设计旨在弥补这些不足,它通过整合机器人与通用多模态数据,采用多阶段训练策略,并引入长视频与高分辨率图像,大幅提升了机器人的操作能力。
项目技术分析
RoboBrain 的核心在于三个关键的机器人脑能力:规划能力、可利用性感知和轨迹预测。规划能力指的是将复杂的操作指令分解为可管理的子任务;可利用性感知则是识别和解释交互物体的可利用性;轨迹预测则是对操作轨迹进行前瞻性预测,确保操作的顺利进行。为了实现这些功能,项目团队首先开发了 ShareRobot 数据集,这是一个高质量的多维信息标签数据集,包括任务规划、物体可利用性以及末端执行器轨迹等。ShareRobot 数据集经过三个人类标注者的精心校对,确保了多样性和准确性。
基于 ShareRobot 数据集,RoboBrain 通过多阶段训练策略,将 MLLM 与机器人数据相结合,进一步提高了机器人的操作能力。实验结果显示,RoboBrain 在多种机器人任务中达到了最先进的性能水平。
项目及技术应用场景
RoboBrain 可以应用于各种需要复杂操作的机器人场景,例如家庭助理机器人、工业自动化机械臂等。在家庭助理机器人中,RoboBrain 可以帮助机器人理解指令,规划操作步骤,如“把苹果放进篮子里”。在工业自动化领域,RoboBrain 可以协助机械臂进行精确的操作,比如组装、搬运等。
项目特点
- 数据集创新:ShareRobot 数据集提供了任务规划、物体可利用性和轨迹预测等多维信息,为机器人操作提供了丰富的学习材料。
- 多阶段训练策略:RoboBrain 的训练分为多个阶段,每个阶段都针对特定的能力进行优化,确保模型的综合性能。
- 模块化设计:RoboBrain 的设计允许通过不同的训练阶段和模型变体来优化特定的功能,如规划、可利用性感知和轨迹预测。
- 性能卓越:在各种机器人任务中,RoboBrain 展现出了卓越的性能,具有广泛的实用价值。
以下是 RoboBrain 的几个关键特性:
- 数据准备:提供了详细的数据准备指南,帮助用户构建所需的数据集。
- 训练脚本:提供了从不同阶段训练模型所需的脚本,包括预训练和微调。
- 支持HF/VLLM 推断:支持使用 VLLM 进行推断,提供了一种灵活的模型部署方式。
- 性能评估:提供了评估指标和脚本,帮助用户理解和评估模型性能。
RoboBrain 的发布为机器人领域带来了新的可能性,其强大的功能和广泛的应用场景预示着在未来机器人技术发展中将发挥重要作用。通过不断优化和迭代,RoboBrain 有望进一步推动机器人操作技术的发展。