Recommender_System:打造工业级推荐系统全链路解决方案

Recommender_System:打造工业级推荐系统全链路解决方案

Recommender_System 推荐系统入门指南,全面介绍了工业级推荐系统的理论知识(王树森推荐系统公开课-基于小红书的场景讲解工业界真实的推荐系统),如何基于TensorFlow2训练模型,如何实现高性能、高并发、高可用的Golang推理微服务。Comprehensively introduced the theory of industrial recommender system, how to trainning models based on TensorFlow2, how to implement the high-performance、high-concurrency and high-available inference services base on Golang. Recommender_System 项目地址: https://gitcode.com/gh_mirrors/recom/Recommender_System

在数字化时代,个性化推荐系统已经成为各类在线平台的核心竞争力。无论是电商、社交网络还是内容平台,一个精准有效的推荐系统能够极大提升用户体验和平台效益。今天,我们将为您介绍一个开源项目——Recommender_System,它从入门到精通,全面介绍了工业级推荐系统的构建过程。

项目介绍

Recommender_System 项目旨在提供一套完整的工业级推荐系统解决方案。项目内容涵盖了从理论知识的普及、模型训练、到高性能推理服务的搭建等多个方面。通过该项目,开发者能够理解推荐系统背后的原理,并掌握使用TensorFlow2进行模型训练的方法,同时学习如何利用Golang实现高并发、高可用的推理微服务。

项目技术分析

项目技术分析方面,Recommender_System 项目详细介绍了以下内容:

  1. 推荐系统的链路:从用户行为收集、数据处理、模型训练到结果展示,项目详细讲解了整个推荐系统的工作流程。
  2. 召回算法:涵盖了基于物品和用户的协同过滤、矩阵补全、双塔模型、Deep Retrieval等多种召回算法。
  3. 排序模型:介绍了多目标排序、MMoE、预估分数融合等排序模型,以及视频播放建模等应用案例。
  4. 特征交叉:讲解了因子分解机FM、深度交叉网络DCN、LHUC网络结构等特征交叉技术。
  5. 用户行为序列:涉及用户行为序列建模、DIN模型(注意力机制)、SIM模型(长序列建模)等。
  6. 重排技术:包括多样性度量、MMR多样性算法、业务规则约束下的多样性算法、DPP多样性算法等。
  7. 物品冷启动:讨论了优化目标、评价指标,以及简单的召回通道、聚类召回、Look-Alike召回、流量调控等方法。

项目技术应用场景

Recommender_System 的技术应用场景广泛,适用于电商推荐、社交网络好友推荐、内容平台个性化推荐等多个领域。以下是一些具体的应用场景:

  • 电商个性化推荐:根据用户的购物历史和浏览行为,推荐相关商品,提高用户满意度和购买率。
  • 社交媒体内容推荐:为用户推荐感兴趣的新闻、视频和文章,增加用户活跃度和平台的用户粘性。
  • 在线音乐和视频推荐:根据用户的听歌或观看历史,推荐相似的音乐或视频内容。

项目特点

Recommender_System 项目具有以下特点:

  • 全面的理论和实践结合:项目不仅提供了丰富的理论知识,还包含了实际应用案例和代码实现。
  • 支持多种算法和技术:涵盖了从召回、排序、特征交叉到用户行为序列建模等多种推荐系统相关算法和技术。
  • 易于学习和使用:项目内容结构清晰,适合不同层次的技术人员学习和使用。

通过以上介绍,我们可以看到 Recommender_System 是一个功能全面、易于学习的开源项目,它为开发者和研究人员提供了一个宝贵的资源,可以帮助他们快速构建和优化自己的推荐系统。无论是从理论知识的掌握,还是实际应用的实现,Recommender_System 都能为您提供有力的支持。立即开始使用 Recommender_System,打造属于您的个性化推荐系统吧!

Recommender_System 推荐系统入门指南,全面介绍了工业级推荐系统的理论知识(王树森推荐系统公开课-基于小红书的场景讲解工业界真实的推荐系统),如何基于TensorFlow2训练模型,如何实现高性能、高并发、高可用的Golang推理微服务。Comprehensively introduced the theory of industrial recommender system, how to trainning models based on TensorFlow2, how to implement the high-performance、high-concurrency and high-available inference services base on Golang. Recommender_System 项目地址: https://gitcode.com/gh_mirrors/recom/Recommender_System

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎连研Shana

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值