slurm_gpu_ubuntu 项目教程

slurm_gpu_ubuntu 项目教程

slurm_gpu_ubuntuInstructions for setting up a SLURM cluster using Ubuntu 18.04.3 with GPUs.项目地址:https://gitcode.com/gh_mirrors/sl/slurm_gpu_ubuntu

项目介绍

slurm_gpu_ubuntu 是一个开源项目,旨在帮助用户在 Ubuntu 系统上高效管理和调度 GPU 资源。该项目提供了一套详尽的指南,教你如何在 Ubuntu 18.04.3 LTS 系统上构建一个 GPU 集群,并使用 Slurm 进行资源管理。

项目快速启动

环境准备

确保你有一个运行 Ubuntu 18.04.3 LTS 的系统,并且已经安装了必要的开发工具和依赖项。

克隆项目

git clone https://github.com/nateGeorge/slurm_gpu_ubuntu.git
cd slurm_gpu_ubuntu

安装依赖

sudo apt-get update
sudo apt-get install -y build-essential git cmake

配置和启动

  1. 编辑配置文件,根据你的硬件和网络环境进行调整。
  2. 启动 Slurm 服务:
sudo systemctl start slurmctld
sudo systemctl start slurmd

应用案例和最佳实践

应用案例

slurm_gpu_ubuntu 项目适用于需要大量 GPU 资源的高性能计算环境,如深度学习训练、科学计算等。通过 Slurm 的资源管理和调度,可以显著提高计算效率和资源利用率。

最佳实践

  1. 资源监控:使用 slurm_gpustat 工具监控 GPU 使用情况,确保资源合理分配。
  2. 作业调度:合理配置作业优先级和资源限制,避免资源争抢。
  3. 故障恢复:配置 Slurm 的故障恢复机制,确保系统稳定运行。

典型生态项目

Slurm

Slurm 是一个开源的集群管理和作业调度系统,广泛应用于高性能计算环境。它提供了强大的资源管理和作业调度功能,支持多种操作系统和硬件平台。

CUDA

CUDA 是 NVIDIA 推出的并行计算平台和编程模型,用于加速 GPU 上的计算任务。与 Slurm 结合使用,可以充分发挥 GPU 的计算能力。

Conda

Conda 是一个开源的包管理和环境管理系统,支持多种编程语言和平台。通过 Conda,可以轻松管理不同主机的环境一致性,确保计算任务的顺利执行。

通过以上模块的介绍和实践,你可以快速上手 slurm_gpu_ubuntu 项目,并在实际应用中发挥其强大的功能。

slurm_gpu_ubuntuInstructions for setting up a SLURM cluster using Ubuntu 18.04.3 with GPUs.项目地址:https://gitcode.com/gh_mirrors/sl/slurm_gpu_ubuntu

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

邢霜爽Warrior

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值