Larastan 使用教程

Larastan 使用教程

larastan⚗️ Adds code analysis to Laravel improving developer productivity and code quality.项目地址:https://gitcode.com/gh_mirrors/la/larastan

项目介绍

Larastan 是一个为 Laravel 框架设计的代码分析工具,旨在提高开发者的工作效率和代码质量。它是 PHPStan 的一个封装,专注于在编写测试之前发现代码中的错误,从而捕获整个类别的 bug。Larastan 通过为 Laravel 添加静态类型检查,支持 Laravel 的大部分“魔法”功能,并能在不加载应用程序代码的情况下发现代码中的 bug。

项目快速启动

安装 Larastan

首先,使用 Composer 将 Larastan 作为开发依赖安装到你的 Laravel 项目中:

composer require --dev "larastan/larastan:^2.0"

配置 PHPStan

接下来,在项目的根目录下创建一个 phpstan.neonphpstan.neon.dist 文件,配置如下:

includes:
    - vendor/larastan/larastan/extension.neon

parameters:
    paths:
        - app/
    level: 5
    # ignoreErrors:
    #     - '#PHPDoc tag @var#'
    #
    # excludePaths:
    #     - /*/*/FileToBeExcluded.php
    #
    # checkMissingIterableValueType: false

运行分析

最后,运行以下命令开始代码分析:

vendor/bin/phpstan analyse

应用案例和最佳实践

应用案例

Larastan 可以用于任何 Laravel 项目,特别是在大型项目中,它可以帮助开发者提前发现潜在的 bug 和类型错误,从而减少调试时间。例如,在一个电子商务平台项目中,Larastan 可以帮助检查订单处理逻辑中的类型错误,确保数据的一致性和完整性。

最佳实践

  • 定期运行 Larastan:建议在持续集成(CI)流程中定期运行 Larastan,以确保每次代码提交都不会引入新的错误。
  • 逐步提高分析级别:从较低的分析级别开始,逐步提高到更高的级别,以适应项目的复杂性。
  • 自定义错误忽略规则:根据项目需求,自定义需要忽略的错误类型,以减少误报。

典型生态项目

Larastan 作为 Laravel 生态系统的一部分,与以下项目协同工作,共同提升 Laravel 应用的质量:

  • PHPStan:Larastan 的基础,提供静态代码分析的核心功能。
  • Laravel IDE Helper:生成 Laravel 的 IDE 辅助文件,提高代码编写的效率和准确性。
  • Laravel Debugbar:在开发过程中提供实时的调试信息,帮助快速定位问题。

通过这些工具的结合使用,可以显著提升 Laravel 项目的开发体验和代码质量。

larastan⚗️ Adds code analysis to Laravel improving developer productivity and code quality.项目地址:https://gitcode.com/gh_mirrors/la/larastan

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨阳航Jasper

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值