Kiss3DGen开源项目最佳实践教程
Kiss3DGen 项目地址: https://gitcode.com/gh_mirrors/ki/Kiss3DGen
1. 项目介绍
Kiss3DGen是一个开源项目,旨在通过重用图像扩散模型来实现3D资产生成。该项目是CVPR 2025会议的官方实现,通过将图像扩散模型应用于3D资产的生成,提供了从文本、图像到3D模型的高效转换方法。
2. 项目快速启动
环境准备
- Python版本:Python 3.10
- PyTorch版本:PyTorch 2.4.0
- CUDA版本:CUDA 12.1
使用conda创建并激活环境:
conda create --name kiss3dgen python=3.10
conda activate kiss3dgen
安装必要的依赖项:
pip install -U pip
conda install cuda -c nvidia/label/cuda-12.1.0
pip install torch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 --index-url https://download.pytorch.org/whl/cu121
pip install xformers==0.0.27.post1
pip install iopath
pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.4.0+cu121.html
pip install -r requirements.txt
模型下载
python ./download_models.py
生成3D资产
运行以下脚本之一,根据需要生成3D资产:
# 文本到3D
python ./pipeline/example_text_to_3d.py
# 图像到3D
python ./pipeline/example_image_to_3d.py
# 3D到3D
python ./pipeline/example_3d_to_3d.py
3. 应用案例和最佳实践
- 自定义模型配置:在
pipeline/pipeline_config/default.yaml
文件中调整模型配置,适应不同的硬件设备。 - 交互式推理:使用
app.py
启动本地Gradio演示,进行交互式推理。
4. 典型生态项目
- PRM:用于3D生成的人工智能项目。
- FlexGen:专注于灵活性和高效性的3D生成项目。
- Unique3D:致力于生成独特3D模型的开源项目。
- FluxGym:用于3D生成和训练的强化学习环境。
通过遵循以上最佳实践,开发者可以有效地使用Kiss3DGen项目,并在开源社区中贡献自己的力量。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考