OpenATS安装与配置指南

OpenATS安装与配置指南

OpenATS Open Auto Tracking System for satellite tracking or target tracking. OpenATS 项目地址: https://gitcode.com/gh_mirrors/op/OpenATS

1. 项目基础介绍

OpenATS(Open Auto Tracking System)是一个开源的自动追踪系统,主要用于卫星追踪或目标追踪。该系统由单片机端、客户端、服务器端和Web端组成,全部采用C语言编写(除Web端外),以确保兼容性和计算效率。整个系统搭建在Linux环境中,可以运行在树莓派等小型Linux计算机上。

2. 项目使用的关键技术和框架

  • 编程语言:C语言(单片机端、客户端、服务器端),HTML/CSS/JavaScript(Web端)。
  • 关键技术
    • GPSD:用于处理GPS模块的信息,提供精确的时间同步和位置数据。
    • SGP4/SDP4算法:用于计算卫星的轨道位置。
    • WebSocket:客户端与服务器端、Web端之间的实时数据通信。
    • MySQL/MariaDB:用于存储和管理客户端数据。
    • AccelStepper库:用于控制步进电机。

3. 项目安装和配置的准备工作

准备工作

  • 确保你的系统为Linux环境。
  • 安装必要的依赖环境,包括GPSD、libgps-dev、nscurses、libwebsockets-dev、gcc、make、wget等。
  • 如果使用GPS模块,建议安装NTPD,并设置为本地的GPS源。

安装步骤

单片机端安装
  1. 下载Arduino IDE,并安装AccelStepper库。
  2. 将单片机的Arduino源码上传到Arduino或STM32板。
  3. 根据硬件条件修改代码中的脉冲接口针脚编号和脉冲比例系数。
客户端安装
  1. 克隆项目到本地:git clone https://github.com/OpenATS/OpenATS.git
  2. 进入客户端目录,安装依赖:make
  3. 如果需要,安装NTPD,并设置为使用GPS作为时间源。
服务端安装
  1. 克隆项目到本地。
  2. 安装MySQL或MariaDB数据库,以及libsqlclient-dev客户端库。
  3. 进入服务端目录,安装依赖:make
Web端部署
  1. 安装Web服务器环境,如Apache。
  2. 将Web端文件夹下的文件拷贝到Web服务器目录中。
  3. 修改html主页的服务器地址,以便通过WebSocket获取服务端信息。
配置文件
  • 客户端和服务端都有名为options.ini的配置文件,位于项目根目录。
  • 修改配置文件以设置接收站的默认经纬度、高度等信息。
  • 配置文件还包括其他设置,如是否使用GPSD服务、GPS时间、串口配置等。

完成以上步骤后,OpenATS系统应该就可以正常运行了。根据项目需求,你可能还需要进行进一步的配置和调试。

OpenATS Open Auto Tracking System for satellite tracking or target tracking. OpenATS 项目地址: https://gitcode.com/gh_mirrors/op/OpenATS

内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取匹配、目标检测机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
数据集介绍:36种动物目标检测数据集 一、基础信息 数据集名称:36种动物目标检测数据集 图片数量: - 训练集:6,719张图片 - 验证集:1,907张图片 - 测试集:962张图片 分类类别: 涵盖36种陆地及空中动物类别,包括但不限于: - 家畜类:Cattle(牛)、Sheep(羊)、Goat(山羊)、Pig(猪) - 野生哺乳类:Bear(熊)、Fox(狐)、Lynx(猞猁)、Otter(水獭) - 鸟类:Eagle(鹰)、Owl(猫头鹰)、Parrot(鹦鹉)、Swan(天鹅) - 小型动物:Rabbit(兔)、Mouse(鼠)、Hedgehog(刺猬)、Frog(蛙) 标注格式: YOLO格式,包含目标边界框坐标及类别索引,可直接用于主流深度学习框架训练。 二、适用场景 农业畜牧业监测: 支持开发牲畜数量统计、健康监测系统,提升养殖场自动化管理水平。 生态保护野生动物研究: 用于自然保护区动物分布监测、濒危物种识别等场景的AI模型训练。 智能安防系统: 集成至CCTV监控系统,检测农场/城市环境中特定动物(如Raccoon浣熊、Snake蛇类)的入侵。 教育科研工具: 为动物行为学、生物多样性研究提供标准化视觉数据资源。 三、数据集优势 跨场景物种覆盖: 同时包含家养动物野生动物,覆盖空中/地面/洞穴物种,支持模型泛化能力训练。 精细化标注体系: 严格遵循YOLO标注标准,针对中小型动物(如Sparrow麻雀、Spider蜘蛛)提供高密度标注。 多环境适应性: 数据来源包含航拍(Aerial)、地面拍摄等多视角,适应复杂背景下的检测需求。 即用型数据划分: 按7:2:1比例预分割训练集/验证集/测试集,支持开箱即用的模型开发流程。 任务扩展潜力: 除目标检测外,可支持动物行为分析、种群密度估计等衍生任务开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

裘羿洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值