Dingo Quadruped 机器人项目教程

Dingo Quadruped 机器人项目教程

DingoQuadruped Base code for the Dingo quadruped; modified from Stanford Pupper and Notspot repositories. Includes integration with ROS Noetic and a simulation of the Dingo DingoQuadruped 项目地址: https://gitcode.com/gh_mirrors/di/DingoQuadruped

1. 项目目录结构及介绍

Dingo Quadruped 是一个开源的四足机器人项目,其代码库包含了构建和运行这个机器人所需的所有文件。以下是项目的目录结构及其简要介绍:

DingoQuadruped/
├── assets/                        # 存放项目说明中使用的图片文件
├── dingo_nano/                    #Arduino Nano V3的代码,用于读取传感器数据并发送到Raspberry Pi
├── dingo_ws/                      # ROS工作空间,包含所有必要的软件包
│   ├── src/
│   │   ├── dingo/                 # 包含机器人节点和启动文件的软件包
│   │   ├── dingo_control/         # 包含控制相关文件,包括运动学和默认的跑步控制器
│   │   ├── dingo_description/     # 包含模拟文件(URDF文件和网格)
│   │   ├── dingo_gazebo/          # 包含Gazebo模拟文件
│   │   ├── dingo_hardware_interfacing/ # 包含硬件接口文件
│   │   │   ├── dingo_input_interfacing # 包含接收和解释命令的文件(来自手柄或键盘)
│   │   │   ├── dingo_peripheral_interfacing # 包含与Arduino Nano、LCD屏幕和IMU接口的文件
│   │   │   └── dingo_servo_interfacing # 包含向伺服电机发送关节角度的硬件接口文件
│   │   └── dingo_utilities/        # 包含实用的工具文件
├── Dingo Robot Bill of Materials.xlsx # 机器人组件的物料清单
└── README.md                      # 项目说明文件

2. 项目的启动文件介绍

项目的启动文件主要位于 dingo_ws/src/dingo/ 目录下,以下是一些主要的启动文件及其作用:

  • dingo.launch: 这是启动Dingo机器人的主启动文件。它负责初始化机器人节点,并加载必要的配置和参数。

  • joy_control.launch: 用于启动手柄控制节点的启动文件。它允许用户通过手柄来控制机器人。

  • sim.launch: 用于启动Gazebo模拟的启动文件。它加载了机器人的URDF模型并启动模拟环境。

3. 项目的配置文件介绍

项目的配置文件位于各个软件包中,以下是几个关键的配置文件:

  • config/dingo_config.yaml: 包含机器人硬件配置和参数的YAML文件。这些参数包括伺服电机配置、传感器校准等。

  • config/controllers.yaml: 包含运动控制器的配置参数,如跑步控制器、行走控制器等。

  • config/sensors.yaml: 包含传感器配置和校准参数的YAML文件。

通过编辑这些配置文件,用户可以自定义机器人的行为和性能,以适应不同的使用场景和需求。

DingoQuadruped Base code for the Dingo quadruped; modified from Stanford Pupper and Notspot repositories. Includes integration with ROS Noetic and a simulation of the Dingo DingoQuadruped 项目地址: https://gitcode.com/gh_mirrors/di/DingoQuadruped

基于Swin Transformer与ASPP模块的图像分类系统设计与实现 本文介绍了一种结合Swin Transformer与空洞空间金字塔池化(ASPP)模块的高效图像分类系统。该系统通过融合Transformer的全局建模能力和ASPP的多尺度特征提取优势,显著提升了模型在复杂场景下的分类性能。 模型架构创新 系统核心采用Swin Transformer作为骨干网络,其层次化窗口注意力机制能高效捕获长距离依赖关系。在特征提取阶段,创新性地引入ASPP模块,通过并行空洞卷积(膨胀率6/12/18)和全局平均池化分支,实现多尺度上下文信息融合。ASPP输出经1x1卷积降维后与原始特征拼接,有效增强了模型对物体尺寸变化的鲁棒性。 训练优化策略 训练流程采用Adam优化器(学习率0.0001)和交叉熵损失函数,支持多GPU并行训练。系统实现了完整的评估指标体系,包括准确率、精确率、召回率、特异度和F1分数等6项指标,并通过动态曲线可视化模块实时监控训练过程。采用早停机制保存最佳模型,验证集准确率提升可达3.2%。 工程实现亮点 1. 模块化设计:分离数据加载、模型构建和训练流程,支持快速迭代 2. 自动化评估:每轮训练自动生成指标报告和可视化曲线 3. 设备自适应:智能检测CUDA可用性,无缝切换训练设备 4. 中文支持:优化可视化界面的中文显示与负号渲染 实验表明,该系统在224×224分辨率图像分类任务中,仅需2个epoch即可达到92%以上的验证准确率。ASPP模块的引入使小目标识别准确率提升15%,特别适用于医疗影像等需要细粒度分类的场景。未来可通过轻量化改造进一步优化推理速度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

皮泉绮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值