DeepDoctection 文档分析工具安装与使用指南

DeepDoctection 文档分析工具安装与使用指南

项目地址:https://gitcode.com/gh_mirrors/de/deepdoctection

目录结构及介绍

DeepDoctection 是一个用于处理文档分析的Python库,其主要功能是协调深度学习模型进行文档提取和布局分析任务。在查看https://github.com/deepdoctection/deepdoctection时,我们可以了解到该项目的主要目录结构包括以下部分:

  • configs: 存储模型配置文件。
  • docker: 包含Docker相关文件,用于容器化部署。
  • docs: 文档说明,包括安装指导和API参考。
  • scripts: 脚本集合,如数据预处理脚本。
  • tests: 单元测试和其他测试用例所在的目录。

此外,还有一些重要的基础文件:

  • readthedocs.yaml: ReadTheDocs构建自动生成文档的配置文件。
  • CONTRIBUTING.md: 提供给贡献者的开发指南。
  • LICENSE: 许可证文件,指出项目采用的是Apache许可证版本2.0。
  • Makefile: 包含编译或自动执行某些操作的命令集。
  • README.md: 项目的简介以及基本的安装和使用信息。
  • mkdocs.yml: MkDocs构建静态文档网站的配置文件。
  • requirements.txt: 列出了运行该项目所需的Python包及其版本号。
  • setup.cfg: 配置文件,用来控制Python打包工具的行为。
  • setup.py: 用于描述项目并建立Python包的脚本。

启动文件介绍

DeepDoctection没有单独的“主”启动文件,而是通过调用其中的不同模块来实现特定的功能,例如从src目录下的子模块中调用类和函数。然而,在实际应用中,通常会创建一个Python脚本来加载DeepDoctection的环境,并设置必要的参数和配置以运行具体的任务。例如,可以使用main.py这样的入口点脚本来初始化和执行管道流程,但是这个文件并不固定存在于每一个克隆的仓库中,而需要由开发者根据需求自行创建。

配置文件介绍

Configurations Directory (configs)

configs目录下存放着各种不同的配置文件,主要用于调整和定义各个模型的参数,包括训练细节、输入尺寸、权重初始化等。这些配置文件通常是.yaml格式,可以被解析并传递到对应的模型初始化过程中,以便进行个性化定制和实验。例如:

  • base_configs: 基础配置文件,提供了所有配置的基础模板。
  • model_configs: 不同模型的具体配置,比如ResNet、Mask R-CNN等模型的参数设定。
  • dataset_configs: 数据集相关的配置,例如图像大小、类别数等具体属性。

以上三个主要方面构成了DeepDoctection的核心组成部分,对于深入理解并利用该框架解决复杂文档分析问题至关重要。在实践过程中,理解和适配这些目录、文件和配置将是成功的关键。如果你对某个具体的部分有更详细的需求,建议直接查阅https://github.com/deepdoctection/deepdoctection中的相应代码和文档,因为那里包含了最新的信息和技术细节。


以上是基于提供的内容进行解释的关于DeepDoctection项目的基本介绍,希望可以帮助你更好地了解和使用此项目。如果有任何疑问或者需要进一步的帮助,欢迎随时提问。

deepdoctection A Repo For Document AI deepdoctection 项目地址: https://gitcode.com/gh_mirrors/de/deepdoctection

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白羿锟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值