Pydantic中的联合类型(Union)验证机制详解
pydantic Data validation using Python type hints 项目地址: https://gitcode.com/gh_mirrors/py/pydantic
联合类型验证的基本概念
在Pydantic中,联合类型(Union)的验证与其他类型有着本质区别。对于普通类型,验证要求所有字段/项/值都必须有效;而对于联合类型,只需要其中一个成员验证通过即可。
这种特性带来了两个核心问题:
- 应该按什么顺序验证联合类型的各个成员?
- 验证失败时应返回哪些错误信息?
Pydantic的三种联合类型验证模式
Pydantic提供了三种主要的联合类型验证策略:
1. 从左到右模式(left_to_right)
这是最简单的验证方式,按定义顺序依次尝试每个成员,返回第一个验证成功的成员。
from typing import Union
from pydantic import BaseModel, Field
class User(BaseModel):
id: Union[str, int] = Field(union_mode='left_to_right')
特点:
- 验证顺序至关重要
- 可能导致意外结果(如数字字符串被解析为整数)
- Pydantic 2.x版本后不再是默认模式
2. 智能模式(smart)
这是Pydantic 2.x的默认验证模式,它会尝试为输入选择最匹配的联合成员。
from typing import Union
from uuid import UUID
from pydantic import BaseModel
class User(BaseModel):
id: Union[int, str, UUID]
name: str
智能匹配算法:
-
对于模型、数据类和类型字典:
- 计算有效字段数量
- 评估匹配精确度
- 优先选择有效字段多的成员
- 数量相同时选择匹配更精确的成员
-
对于其他数据类型:
- 评估匹配精确度(精确匹配 > 严格模式匹配 > 宽松模式匹配)
- 遇到精确匹配立即返回
- 否则返回最左侧的严格或宽松匹配
3. 鉴别联合(discriminated unions)
这是最高效的验证方式,通过鉴别器字段明确指定要验证的成员。
from typing import Literal, Union
from pydantic import BaseModel, Field
class Cat(BaseModel):
pet_type: Literal['cat']
meows: int
class Dog(BaseModel):
pet_type: Literal['dog']
barks: float
class Model(BaseModel):
pet: Union[Cat, Dog] = Field(discriminator='pet_type')
优势:
- 验证性能最佳
- 错误信息最清晰
- 生成的JSON模式符合OpenAPI规范
高级鉴别联合用法
使用可调用鉴别器
当联合成员没有统一的鉴别字段时,可以使用可调用函数作为鉴别器。
from typing import Annotated, Any, Literal
from pydantic import BaseModel, Discriminator, Tag
def get_discriminator_value(v: Any) -> str:
if isinstance(v, dict):
return v.get('fruit', v.get('filling'))
return getattr(v, 'fruit', getattr(v, 'filling', None))
class ThanksgivingDinner(BaseModel):
dessert: Annotated[
Union[
Annotated[ApplePie, Tag('apple')],
Annotated[PumpkinPie, Tag('pumpkin')],
],
Discriminator(get_discriminator_value),
]
嵌套鉴别联合
通过嵌套Annotated类型可以实现多级鉴别:
from typing import Annotated, Literal
from pydantic import BaseModel, Field
class BlackCat(BaseModel):
pet_type: Literal['cat']
color: Literal['black']
black_name: str
Cat = Annotated[Union[BlackCat, WhiteCat], Field(discriminator='color')]
Pet = Annotated[Union[Cat, Dog], Field(discriminator='pet_type')]
最佳实践建议
- 优先使用鉴别联合:它们性能更好,行为更可预测
- 简单场景使用从左到右模式:当需要确保验证顺序时
- 复杂场景考虑智能模式:但要注意算法可能在版本间调整
- 避免单成员联合:Python会将
Union[T]
简化为T
- 自定义错误处理:可以为鉴别器配置自定义错误类型和消息
通过合理选择验证模式,可以确保Pydantic模型在处理联合类型时既高效又符合预期。
pydantic Data validation using Python type hints 项目地址: https://gitcode.com/gh_mirrors/py/pydantic
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考