WoBERT 项目教程
WoBERT项目地址:https://gitcode.com/gh_mirrors/wo/WoBERT
1. 项目目录结构及介绍
根目录
config.py
: 项目的主要配置文件。preprocess.py
: 数据预处理脚本。train.py
: 训练模型的主要脚本。evaluate.py
: 模型评估脚本。models
: 包含不同版本的WoBERT模型定义。data
: 存放数据集的目录。logs
: 训练日志和模型检查点的存储位置。requirements.txt
: 项目依赖的Python包列表。
utils
- 包含各种辅助工具函数,如分词器、加载数据等。
scripts
- 可能包含额外的脚本或命令行工具。
docs
- 文档和说明材料。
tests
- 单元测试和集成测试的代码。
2. 项目的启动文件介绍
train.py
这是主要的训练文件,它负责以下操作:
- 加载配置文件中的设置。
- 准备数据集,可能包括数据预处理。
- 初始化模型和优化器。
- 设置训练循环,执行训练步骤,保存模型检查点。
- 输出训练过程中的监控指标,如损失和验证分数。
evaluate.py
该文件用于评估已经训练好的模型。它会做如下事情:
- 加载训练好的模型。
- 使用配置文件设定的评估数据集。
- 执行模型预测并计算评估指标。
- 输出评估结果。
3. 项目的配置文件介绍
config.py
这个文件包含了所有关键的运行参数,如模型架构、训练设置和数据处理选项。典型的参数可能包括:
model_name
: 模型名称或路径。model_config
: 模型的配置字典,指定层数、隐藏层大小等。batch_size
: 训练批次大小。learning_rate
: 学习率。num_train_epochs
: 训练轮数。max_seq_length
: 输入序列的最大长度。dataset_path
: 数据集路径。save_checkpoints_steps
: 模型保存检查点的频率(训练步骤数)。
在实际使用中,可以根据需求修改这些配置来调整模型的训练行为。通过调整config.py
,你可以控制模型的训练过程,适应不同的硬件资源和任务需求。
请确保安装了所有必要的依赖项,通常可以通过运行pip install -r requirements.txt
来安装。在启动训练之前,确保你的环境满足这些要求,并正确设置了config.py
文件。然后,可以使用以下命令开始训练:
python train.py
同样,评估模型可以这样运行:
python evaluate.py
记得替换相应的配置文件路径以指向正确的模型权重和数据集。