Azure Data Science Virtual Machine 使用教程
1. 项目介绍
Azure Data Science Virtual Machine (DSVM) 是微软 Azure 云上定制的虚拟机镜像,专为数据科学工作而设计。它预装了许多流行的数据科学工具和软件,并进行了预配置,以便快速启动高级分析和智能应用的构建。DSVM 支持 Windows Server 2019 和 Ubuntu 18.04 LTS 版本。
2. 项目快速启动
2.1 创建 DSVM 实例
首先,登录到 Azure 门户,然后按照以下步骤创建 DSVM 实例:
- 在 Azure 门户中,点击“创建资源”。
- 在搜索栏中输入“Data Science Virtual Machine”,然后选择“Data Science Virtual Machine - Ubuntu 18.04”。
- 点击“创建”。
- 在“基本信息”选项卡中,填写必要的信息,如订阅、资源组、虚拟机名称、区域等。
- 在“大小”选项卡中,选择适合您需求的虚拟机大小。
- 在“管理”选项卡中,配置管理选项,如诊断存储账户等。
- 点击“查看 + 创建”,然后点击“创建”以启动部署。
2.2 连接到 DSVM
部署完成后,您可以通过 SSH 连接到 DSVM:
ssh <用户名>@<DSVM-IP地址>
2.3 使用 Jupyter Notebook
DSVM 预装了 Jupyter Notebook,您可以通过浏览器访问 Jupyter Notebook:
- 在本地浏览器中打开
http://<DSVM-IP地址>:8000
。 - 输入您的用户名和密码进行登录。
- 创建一个新的 Notebook 并开始编写代码。
3. 应用案例和最佳实践
3.1 数据分析
DSVM 提供了丰富的数据分析工具,如 Pandas、NumPy 和 Matplotlib。您可以使用这些工具进行数据清洗、分析和可视化。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 读取数据
data = pd.read_csv('data.csv')
# 数据清洗
data = data.dropna()
# 数据分析
mean_value = data['column_name'].mean()
# 数据可视化
plt.plot(data['column_name'])
plt.show()
3.2 机器学习
DSVM 预装了多种机器学习框架,如 Scikit-learn、TensorFlow 和 PyTorch。您可以使用这些框架构建和训练机器学习模型。
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
4. 典型生态项目
4.1 Azure Machine Learning
Azure Machine Learning 是微软提供的云端机器学习平台,与 DSVM 无缝集成。您可以使用 Azure Machine Learning 进行模型训练、部署和管理。
4.2 Azure Databricks
Azure Databricks 是一个基于 Apache Spark 的分析平台,与 DSVM 结合使用可以进行大规模数据处理和分析。
4.3 Azure Synapse Analytics
Azure Synapse Analytics 是一个无服务器的分析服务,与 DSVM 结合使用可以进行大数据分析和数据仓库管理。
通过以上模块的介绍和实践,您可以快速上手并充分利用 Azure Data Science Virtual Machine 进行数据科学工作。