Grendel-GS 项目使用与配置指南
1. 项目目录结构及介绍
Grendel-GS 项目的主要目录结构如下:
assets/
: 存储项目所需的资源文件。examples/
: 包含了一些示例数据和代码。gaussian_renderer/
: 实现了高斯渲染的相关代码。lpipsPyTorch/
: 用于计算图像之间感知差异的PyTorch库。scene/
: 包含场景处理的代码。submodules/
: 存储了项目依赖的子模块。utils/
: 通用工具函数。.gitignore
: 指定git忽略的文件。.gitmodules
: 指定子模块的信息。LICENSE.txt
: 项目许可证文件。README.md
: 项目说明文件。analyze.py
: 分析工具脚本。analyze_statistic.py
: 统计分析脚本。convert.py
: 数据转换脚本。densification.py
: 密集化处理脚本。environment.yml
: Conda环境配置文件。metrics.py
: 评估指标计算脚本。render.py
: 渲染脚本。train.py
: 训练脚本。train_internal.py
: 内部训练脚本。
2. 项目的启动文件介绍
项目的启动主要涉及以下几个脚本:
train.py
: 用于启动训练流程的脚本。可以指定数据集路径、模型存储路径、是否进行评估、批量大小等参数。render.py
: 用于启动渲染流程的脚本。可以指定数据集路径和模型路径等参数。
例如,使用单个GPU进行训练的命令如下:
python train.py -s <path_to_COLMAP_dataset> --eval
使用多个GPU进行分布式训练的命令如下:
torchrun --standalone --nnodes=1 --nproc-per-node=4 train.py --bsz 4 -s <path_to_COLMAP_dataset> --eval
3. 项目的配置文件介绍
项目的配置主要通过以下文件进行:
environment.yml
: Conda环境配置文件,用于创建项目运行所需的Python环境和依赖库。
在项目根目录下运行以下命令可以创建环境:
conda env create --file environment.yml
之后激活环境:
conda activate gaussian_splatting
train.py
和render.py
中的命令行参数:这些脚本提供了丰富的命令行参数,用于配置训练和渲染过程中的各种参数,如批量大小、迭代次数、学习率等。
例如,在 train.py
中可以通过 --bsz
参数设置批量大小,通过 --iterations
参数设置总迭代次数等。具体的参数说明可以在脚本的命令行帮助中找到。