Grendel-GS 项目使用与配置指南

Grendel-GS 项目使用与配置指南

Grendel-GS Ongoing research training gaussian splatting at scale by distributed system Grendel-GS 项目地址: https://gitcode.com/gh_mirrors/gr/Grendel-GS

1. 项目目录结构及介绍

Grendel-GS 项目的主要目录结构如下:

  • assets/: 存储项目所需的资源文件。
  • examples/: 包含了一些示例数据和代码。
  • gaussian_renderer/: 实现了高斯渲染的相关代码。
  • lpipsPyTorch/: 用于计算图像之间感知差异的PyTorch库。
  • scene/: 包含场景处理的代码。
  • submodules/: 存储了项目依赖的子模块。
  • utils/: 通用工具函数。
  • .gitignore: 指定git忽略的文件。
  • .gitmodules: 指定子模块的信息。
  • LICENSE.txt: 项目许可证文件。
  • README.md: 项目说明文件。
  • analyze.py: 分析工具脚本。
  • analyze_statistic.py: 统计分析脚本。
  • convert.py: 数据转换脚本。
  • densification.py: 密集化处理脚本。
  • environment.yml: Conda环境配置文件。
  • metrics.py: 评估指标计算脚本。
  • render.py: 渲染脚本。
  • train.py: 训练脚本。
  • train_internal.py: 内部训练脚本。

2. 项目的启动文件介绍

项目的启动主要涉及以下几个脚本:

  • train.py: 用于启动训练流程的脚本。可以指定数据集路径、模型存储路径、是否进行评估、批量大小等参数。
  • render.py: 用于启动渲染流程的脚本。可以指定数据集路径和模型路径等参数。

例如,使用单个GPU进行训练的命令如下:

python train.py -s <path_to_COLMAP_dataset> --eval

使用多个GPU进行分布式训练的命令如下:

torchrun --standalone --nnodes=1 --nproc-per-node=4 train.py --bsz 4 -s <path_to_COLMAP_dataset> --eval

3. 项目的配置文件介绍

项目的配置主要通过以下文件进行:

  • environment.yml: Conda环境配置文件,用于创建项目运行所需的Python环境和依赖库。

在项目根目录下运行以下命令可以创建环境:

conda env create --file environment.yml

之后激活环境:

conda activate gaussian_splatting
  • train.pyrender.py 中的命令行参数:这些脚本提供了丰富的命令行参数,用于配置训练和渲染过程中的各种参数,如批量大小、迭代次数、学习率等。

例如,在 train.py 中可以通过 --bsz 参数设置批量大小,通过 --iterations 参数设置总迭代次数等。具体的参数说明可以在脚本的命令行帮助中找到。

Grendel-GS Ongoing research training gaussian splatting at scale by distributed system Grendel-GS 项目地址: https://gitcode.com/gh_mirrors/gr/Grendel-GS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尹田凌Luke

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值