NeuralCoref 使用教程
1. 项目目录结构及介绍
neuralcoref
这是NeuralCoref的核心代码库,包含了实现神经网络核心ference解析的类和函数。
examplesexamples
这里是一些示例脚本,展示了如何在实际中应用NeuralCoref。
bin
这个目录可能包含一些可执行文件或脚本,用于特定的操作,如安装或更新。
setup.py
这是Python项目的标准配置文件,用于定义包信息以及构建、安装和发布过程。
requirements.txt
列出项目运行所需的依赖库及其版本。
README.md
项目简介和指南,包括如何安装和使用NeuralCoref。
travis.yml
Travis CI的配置文件,用于自动化测试和构建。
neuralcoref_cache/
这是一个缓存目录,存储预训练模型和其他临时文件。
2. 项目的启动文件介绍
NeuralCoref 的主要使用方式是将其集成到Spacy的管道中。这通常通过以下步骤完成:
-
加载Spacy的英文模型:
import spacy nlp = spacy.load('en')
-
将NeuralCoref添加到Spacy管道:
import neuralcoref neuralcoref.add_to_pipe(nlp)
一旦这两步完成,你可以像平常一样处理Spacy文档,NeuralCoref就会自动进行核心ference解析。
3. 项目的配置文件介绍
NeuralCoref的主要配置是在neuralcoref/__init__.py
和neuralcoref/neuralcoref.py
中定义的,它们控制着模型的行为和参数。例如,模型的路径、是否使用GPU以及各种超参数。这些不是独立的配置文件,而是嵌入在代码中的默认设置。如果需要自定义参数,可以修改这些源代码或者在使用时传递相应的参数给add_to_pipe()
函数。
要扩展或更改配置,你可能需要直接编辑源码或者创建一个包装类来覆盖默认行为。比如,如果你想改变模型的最小共现数阈值,可以在初始化neuralcoref.NeuralCorefModel
对象时指定min_freq
参数:
from neuralcoref import NeuralCorefModel
model = NeuralCorefModel(None, min_freq=5)
nlp.add_pipe(model, name='neuralcoref', first=True)
请注意,这不是一个传统的配置文件,而是直接与代码交互的方式。对于更复杂的配置需求,建议参考源代码或联系项目维护者获取支持。