Rasa Masterclass 开源项目教程

Rasa Masterclass 开源项目教程

rasa-masterclassData and code files for specific Rasa Masterclass episodes项目地址:https://gitcode.com/gh_mirrors/ra/rasa-masterclass

本教程旨在指导您深入了解并快速上手 Rasa Masterclass 项目。通过以下几个核心模块,我们将一步步揭开这个项目的神秘面纱。

1. 项目目录结构及介绍

Rasa Masterclass 的目录结构精心设计,以便于开发者高效地进行对话管理系统的构建和训练。以下是关键目录及其功能简述:

rasa-masterclass/
├── data/                 # 存放项目的数据集,包括NLU数据和故事文件
│   ├── nlu.md            # 自然语言理解(NLU)的训练数据
│   └── stories.md        # 对话流程的故事
├── domain.yml            # 定义域文件,包含意图、实体、槽位等
├── config.yml            # Rasa的核心配置文件
├── endpoints.yml         # 指定外部服务端点,如API调用
├── requirements.txt      # 项目依赖清单
├── scripts/              # 可执行脚本,用于辅助开发或部署
└── train.py               # 项目的主启动文件,用于训练模型

2. 项目的启动文件介绍

train.py

此文件是项目的启动心脏,它负责编译训练数据、配置模型参数,并触发Rasa模型的训练流程。通过修改该文件中的参数或者提供命令行参数,您可以控制训练过程的不同方面,例如指定训练数据文件、调整模型的配置等。典型用法示例:

python train.py -d data/domain.yml -n my_model --data data/

这条命令将基于提供的领域定义和数据训练一个新的Rasa模型。

3. 项目的配置文件介绍

config.yml

配置文件是Rasa引擎的心脏,它详细说明了机器学习组件的选择、模型的超参数等。本文件通常包含以下关键部分:

  • language: 指定项目使用的自然语言。
  • pipeline: 描述处理输入文本的组件序列,包括分词器、特征提取器、意图识别器等。
  • policies: 定义如何决策下一步行动,以及模型如何从经验中学习。

示例配置片段:

language: "en"

pipeline:
  - name: "WhitespaceTokenizer"
  - name: "CountVectorsFeaturizer"
  - name: "DIETClassifier" #意图识别与实体抽取的混合模型
    epochs: 100
  
policies:
  - name: "TEDPolicy" # Teaching Forced Decoding Policy
    max_history: 5
    epochs: 100

通过以上介绍,您现在应该对Rasa Masterclass项目的架构有了基本的认识。接下来,您可以依据这些指南深入项目内部,开始您的聊天机器人构建之旅。

rasa-masterclassData and code files for specific Rasa Masterclass episodes项目地址:https://gitcode.com/gh_mirrors/ra/rasa-masterclass

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

魏鹭千Peacemaker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值