MMDetection目标检测框架训练指南

MMDetection目标检测框架训练指南

mmdetection open-mmlab/mmdetection: 是一个基于 PyTorch 的人工智能物体检测库,支持多种物体检测算法和工具。该项目提供了一个简单易用的人工智能物体检测库,可以方便地实现物体的检测和识别,同时支持多种物体检测算法和工具。 mmdetection 项目地址: https://gitcode.com/gh_mirrors/mm/mmdetection

概述

MMDetection是一个功能强大的目标检测框架,支持多种检测算法和模型。本文将详细介绍如何使用MMDetection框架在标准数据集和自定义数据集上进行模型训练,涵盖从数据准备到模型训练、测试的全流程。

标准数据集训练

数据准备

在开始训练前,需要准备好符合要求的数据集。对于标准数据集如COCO,需要确保数据集的目录结构正确,并包含必要的标注文件。

注意事项

  • 部分预训练模型(如Cityscapes配置文件)使用COCO预训练权重进行初始化
  • 如果网络连接不稳定,建议提前下载好预训练模型

学习率自动缩放机制

MMDetection提供了智能的学习率自动缩放功能,能够根据实际训练时的批量大小自动调整学习率。

核心原理

  • 基于线性扩展规则(Linear Scaling Rule)
  • 参考批次大小为16(8GPU×2图像/GPU)
  • 实际学习率 = 基础学习率 × (实际批量大小 / 参考批量大小)

使用方法

python tools/train.py configs/xxx.py --auto-scale-lr

重要提示

  • 确保配置文件中auto_scale_lr.base_batch_size设置正确
  • 不同配置文件的默认批量大小可能不同(通过_NxM_标识)

单GPU训练

基本命令格式:

python tools/train.py config_file [可选参数]

关键参数

  • --work-dir: 指定工作目录
  • --resume: 从最新检查点恢复训练
  • --resume checkpoint_file: 从指定检查点恢复
  • --cfg-options: 覆盖配置文件设置

训练验证频率: 可在配置文件中通过train_cfg设置验证间隔:

train_cfg = dict(val_interval=12)  # 每12个epoch验证一次

CPU训练

虽然不推荐,但MMDetection支持纯CPU训练:

export CUDA_VISIBLE_DEVICES=-1
python tools/train.py config_file

多GPU训练

使用分布式训练脚本:

bash tools/dist_train.sh config_file gpu_num [可选参数]

多任务管理: 当单机运行多个训练任务时,需要指定不同端口避免冲突:

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh config 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh config 4

多机训练

在多机环境下训练: 第一台机器:

NNODES=2 NODE_RANK=0 PORT=MASTER_PORT MASTER_ADDR=MASTER_ADDR sh tools/dist_train.sh config gpus

第二台机器:

NNODES=2 NODE_RANK=1 PORT=MASTER_PORT MASTER_ADDR=MASTER_ADDR sh tools/dist_train.sh config gpus

Slurm集群训练

在Slurm管理的集群上:

GPUS=16 ./tools/slurm_train.sh partition job_name config work_dir

端口设置方法

  1. 通过--cfg-options动态设置(推荐):
--cfg-options 'dist_params.port=29500'
  1. 直接修改配置文件:
dist_params = dict(backend='nccl', port=29500)

自定义数据集训练

数据格式转换

MMDetection支持三种自定义数据集方式:

  1. 转换为COCO格式(推荐)
  2. 转换为中间格式
  3. 实现全新数据集类

COCO格式关键字段

{
    "images": [{"id", "width", "height", "file_name"}],
    "annotations": [{"id", "image_id", "category_id", "segmentation", "area", "bbox", "iscrowd"}],
    "categories": [{"id", "name", "supercategory"}]
}

配置文件准备

自定义训练需要创建新的配置文件,通常基于现有配置修改:

  1. 修改模型head中的类别数
  2. 更新数据集路径和元信息
  3. 调整数据加载器设置
  4. 配置评估指标

示例配置

_base_ = '../mask_rcnn/base_config.py'

model = dict(
    roi_head=dict(
        bbox_head=dict(num_classes=1), 
        mask_head=dict(num_classes=1)))

data_root = 'data/custom/'
metainfo = {
    'classes': ('object',),
    'palette': [(220, 20, 60)]
}

train_dataloader = dict(
    dataset=dict(
        data_root=data_root,
        metainfo=metainfo,
        ann_file='train/annotations.json',
        data_prefix=dict(img='train/')))

训练自定义模型

启动训练命令:

python tools/train.py configs/custom/config_file.py

测试与推理

模型测试命令:

python tools/test.py configs/custom/config_file.py work_dir/epoch_x.pth

最佳实践建议

  1. 数据准备:确保标注质量,特别是边界框和分割掩码的准确性
  2. 学习率设置:对于小批量训练,适当降低基础学习率
  3. 训练监控:定期检查训练日志和验证结果
  4. 模型选择:根据任务需求选择合适的模型架构
  5. 资源利用:合理配置GPU数量与批量大小的平衡

通过本文介绍的方法,用户可以充分利用MMDetection框架的强大功能,在各种场景下高效训练目标检测模型。

mmdetection open-mmlab/mmdetection: 是一个基于 PyTorch 的人工智能物体检测库,支持多种物体检测算法和工具。该项目提供了一个简单易用的人工智能物体检测库,可以方便地实现物体的检测和识别,同时支持多种物体检测算法和工具。 mmdetection 项目地址: https://gitcode.com/gh_mirrors/mm/mmdetection

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江燕娇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值