MMDetection目标检测框架训练指南
概述
MMDetection是一个功能强大的目标检测框架,支持多种检测算法和模型。本文将详细介绍如何使用MMDetection框架在标准数据集和自定义数据集上进行模型训练,涵盖从数据准备到模型训练、测试的全流程。
标准数据集训练
数据准备
在开始训练前,需要准备好符合要求的数据集。对于标准数据集如COCO,需要确保数据集的目录结构正确,并包含必要的标注文件。
注意事项:
- 部分预训练模型(如Cityscapes配置文件)使用COCO预训练权重进行初始化
- 如果网络连接不稳定,建议提前下载好预训练模型
学习率自动缩放机制
MMDetection提供了智能的学习率自动缩放功能,能够根据实际训练时的批量大小自动调整学习率。
核心原理:
- 基于线性扩展规则(Linear Scaling Rule)
- 参考批次大小为16(8GPU×2图像/GPU)
- 实际学习率 = 基础学习率 × (实际批量大小 / 参考批量大小)
使用方法:
python tools/train.py configs/xxx.py --auto-scale-lr
重要提示:
- 确保配置文件中
auto_scale_lr.base_batch_size
设置正确 - 不同配置文件的默认批量大小可能不同(通过
_NxM_
标识)
单GPU训练
基本命令格式:
python tools/train.py config_file [可选参数]
关键参数:
--work-dir
: 指定工作目录--resume
: 从最新检查点恢复训练--resume checkpoint_file
: 从指定检查点恢复--cfg-options
: 覆盖配置文件设置
训练验证频率: 可在配置文件中通过train_cfg
设置验证间隔:
train_cfg = dict(val_interval=12) # 每12个epoch验证一次
CPU训练
虽然不推荐,但MMDetection支持纯CPU训练:
export CUDA_VISIBLE_DEVICES=-1
python tools/train.py config_file
多GPU训练
使用分布式训练脚本:
bash tools/dist_train.sh config_file gpu_num [可选参数]
多任务管理: 当单机运行多个训练任务时,需要指定不同端口避免冲突:
CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh config 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh config 4
多机训练
在多机环境下训练: 第一台机器:
NNODES=2 NODE_RANK=0 PORT=MASTER_PORT MASTER_ADDR=MASTER_ADDR sh tools/dist_train.sh config gpus
第二台机器:
NNODES=2 NODE_RANK=1 PORT=MASTER_PORT MASTER_ADDR=MASTER_ADDR sh tools/dist_train.sh config gpus
Slurm集群训练
在Slurm管理的集群上:
GPUS=16 ./tools/slurm_train.sh partition job_name config work_dir
端口设置方法:
- 通过
--cfg-options
动态设置(推荐):
--cfg-options 'dist_params.port=29500'
- 直接修改配置文件:
dist_params = dict(backend='nccl', port=29500)
自定义数据集训练
数据格式转换
MMDetection支持三种自定义数据集方式:
- 转换为COCO格式(推荐)
- 转换为中间格式
- 实现全新数据集类
COCO格式关键字段:
{
"images": [{"id", "width", "height", "file_name"}],
"annotations": [{"id", "image_id", "category_id", "segmentation", "area", "bbox", "iscrowd"}],
"categories": [{"id", "name", "supercategory"}]
}
配置文件准备
自定义训练需要创建新的配置文件,通常基于现有配置修改:
- 修改模型head中的类别数
- 更新数据集路径和元信息
- 调整数据加载器设置
- 配置评估指标
示例配置:
_base_ = '../mask_rcnn/base_config.py'
model = dict(
roi_head=dict(
bbox_head=dict(num_classes=1),
mask_head=dict(num_classes=1)))
data_root = 'data/custom/'
metainfo = {
'classes': ('object',),
'palette': [(220, 20, 60)]
}
train_dataloader = dict(
dataset=dict(
data_root=data_root,
metainfo=metainfo,
ann_file='train/annotations.json',
data_prefix=dict(img='train/')))
训练自定义模型
启动训练命令:
python tools/train.py configs/custom/config_file.py
测试与推理
模型测试命令:
python tools/test.py configs/custom/config_file.py work_dir/epoch_x.pth
最佳实践建议
- 数据准备:确保标注质量,特别是边界框和分割掩码的准确性
- 学习率设置:对于小批量训练,适当降低基础学习率
- 训练监控:定期检查训练日志和验证结果
- 模型选择:根据任务需求选择合适的模型架构
- 资源利用:合理配置GPU数量与批量大小的平衡
通过本文介绍的方法,用户可以充分利用MMDetection框架的强大功能,在各种场景下高效训练目标检测模型。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考