Istio 开源项目安装与使用指南

Istio 开源项目安装与使用指南

istioistio offical suppport for arm64 will land since v1.15. now v1.16 release, this project archived.项目地址:https://gitcode.com/gh_mirrors/isti/istio

本指南旨在帮助用户深入了解 Istio 的核心组件及其配置过程,确保您能够顺利部署并开始使用这一强大的服务网格技术。请注意,实际项目地址指向可能存在误差或变更,请以最新官方 GitHub 页面为准。

1. 项目目录结构及介绍

Istio 的仓库包含了多个子目录,用于支持其复杂的架构和服务治理功能。以下是一些关键目录的简介:

  • docs: 包含了官方文档、指南和用户手册。
  • install: 提供了各种环境下的部署脚本和配置文件。
  • pkg: 核心代码包,包括数据模型、公用函数等。
  • samples: 示例应用和配置,对于学习如何使用Istio非常有帮助。
  • sidecar-injector: 用于自动注入Istio sidecar到Kubernetes pod中的逻辑。
  • test: 测试代码和脚本,确保项目质量。
  • mixer: (注: 部分版本后已移除,转由Envoy Filter替代)处理策略执行和遥测收集的服务组件。
  • galley: 配置验证和处理中心。
  • pilot: 负责服务发现、流量管理和安全策略的实施。
  • security: 安全相关的组件和服务。

2. 项目的启动文件介绍

install 目录中,您会找到多种部署方式的脚本和YAML模板,如 Kubernetes 集群部署。典型的启动流程可能涉及使用 istioctl 工具,或者直接应用YAML文件来部署控制平面组件。例如,对于一个基础部署,可能会用到类似于 istioctl install --set profile=demo 的命令,其中 profile=demo 指定了一个预定义的配置集。

Kubernetes 部署示例

apiVersion: apps/v1
kind: Deployment
metadata:
  name: istiod
spec:
  selector:
    matchLabels:
      app: istiod
  replicas: 1
  template:
    metadata:
      labels:
        app: istiod
    spec:
      containers:
      - name: istiod
        image: "istio.io/istio/pilot:{version}"
        args:
          - proxy
          - --domain
          - $(POD_NAMESPACE).svc.cluster.local

(注意:上述代码仅为示意,具体版本号需替换实际可用版本)

3. 项目的配置文件介绍

Istio 的配置主要通过 ConfigMap 和 Custom Resource Definitions (CRDs) 在Kubernetes环境中进行管理。这些配置文件涵盖了服务路由规则、策略、以及服务实例的详细指示。

  • VirtualService: 控制服务间和客户端到服务的通信路径。

    apiVersion: networking.istio.io/v1alpha3
    kind: VirtualService
    metadata:
      name: reviews
    spec:
      hosts:
      - reviews
      http:
      - route:
        - destination:
            host: reviews
            subset: v1
    
  • DestinationRule: 定义服务的子集和负载均衡策略。

    apiVersion: networking.istio.io/v1alpha3
    kind: DestinationRule
    metadata:
      name: reviews
    spec:
      host: reviews
      subsets:
      - name: v1
        labels:
          version: v1
    
  • AuthorizationPolicy (安全策略): 控制访问权限。

    apiVersion: security.istio.io/v1beta1
    kind: AuthorizationPolicy
    metadata:
      name: policy
    spec:
      rules:
      - from:
        - source:
            principals: ["cluster.local/ns/default/sa/bookinfo-productpage"]
        to:
        - operation:
            methods: ["GET", "POST"]
            paths: ["/productpage", "/login", "/logout"]
    

请根据实际项目版本和需求调整上述示例中的配置细节。使用Istio时,强烈建议详细阅读其官方文档,以获取最精确的指导和最佳实践。

istioistio offical suppport for arm64 will land since v1.15. now v1.16 release, this project archived.项目地址:https://gitcode.com/gh_mirrors/isti/istio

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昌隽艳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值