Pronotepy:PRONOTE 学生管理服务的 Python API 封装

Pronotepy:PRONOTE 学生管理服务的 Python API 封装

pronotepy A python API wrapper for pronote pronotepy 项目地址: https://gitcode.com/gh_mirrors/pr/pronotepy

项目介绍

Pronotepy 是一个针对 PRONOTE 学生管理服务的 Python API 封装。它主要关注学生账户,但也有限支持教师账户。该项目使用 PRONOTE 提供的官方 HYPERPLANNING API,因为该 API 对学生不可访问。

项目技术分析

依赖库

  • pycryptodome
  • beautifulsoup4
  • requests
  • autoslot

安装方法

稳定版本

通过 pip 直接从 pypi 安装:

pip install -U pronotepy
最新版本

通过 pip 直接从 GitHub 仓库安装:

pip install -U git+https://github.com/bain3/pronotepy

测试包

运行以下命令进行自我测试:

python -m pronotepy.test_pronotepy

使用示例

以下是一个简单的使用示例:

import pronotepy

client = pronotepy.Client('https://demo.index-education.net/pronote/eleve.html',
                          username='demonstration',
                          password='pronotevs')

if client.logged_in:
    periods = client.periods
    for period in periods:
        for grade in period.grades:
            print(f'{grade.grade}/{grade.out_of}')

项目及技术应用场景

Pronotepy 适用于需要自动化访问 PRONOTE 系统的场景,例如:

  • 学生成绩监控:自动获取并分析学生成绩,生成报告或提醒。
  • 作业提醒:自动获取作业信息并发送提醒。
  • 教师管理工具:教师可以使用该工具自动化一些管理任务。

项目特点

  • 维护模式:Pronotepy 目前处于维护模式,将继续修复 bug 并适应 PRONOTE 的变化,但不会添加新功能。
  • 多平台支持:支持 Python 3.x,适用于多种操作系统。
  • 内置 ENT 支持:提供一些 ENT(教育网络门户)的自动登录功能。
  • QR 码登录:支持通过 PRONOTE QR 码进行登录。
  • 开源社区支持:欢迎社区贡献,任何帮助都受到欢迎。

结语

Pronotepy 是一个功能强大且易于使用的 PRONOTE API 封装,适用于需要自动化访问 PRONOTE 系统的开发者和教育工作者。尽管目前处于维护模式,但它仍然是一个值得信赖的工具,能够帮助用户高效地管理学生和教师账户。如果你正在寻找一个稳定且功能丰富的解决方案,Pronotepy 绝对值得一试!

pronotepy A python API wrapper for pronote pronotepy 项目地址: https://gitcode.com/gh_mirrors/pr/pronotepy

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

资源下载链接为: https://pan.quark.cn/s/a55a57705e7e “八爪鱼采集器8.1.24.zip”是一个包含八爪鱼采集器8.1.24版本的压缩包。八爪鱼采集器是一款功能强大的网页数据抓取工具,能够帮助用户自动化地从互联网中提取各类信息,例如文章内容、产品价格、用户评价。等它在数据分析、市场研究、竞争情报等领域具有重要的应用价值。 压缩包内包含以下四个文件: “Octopus Setup 8.1.24.exe”:这是八爪鱼采集器的安装程序。用户可以通过运行该文件在计算机上安装8.1.24版本的八爪鱼采集器。安装过程中,系统会提示用户阅读并接受许可协议,选择安装路径,并且可能需要管理员权限来完成安装。 “八爪鱼8版本说明.txt”:该文本文件详细介绍了八爪鱼采集器8版本的主要功能、改进点和更新内容。它可能涵盖新功能的说明,例如更智能的爬虫算法、增强的数据处理能力、优化的用户界面等。此外,还可能包含关于如何使用新版本的指导,以及与旧版本的对比。 “安装前必读.txt”:这是一个重要的文档,用户在安装八爪鱼采集器之前应仔细阅读。它可能包含系统需求、安装步骤以及注意事项,例如确保操作系统兼容性、关闭杀毒软件以避免误报、预留足够的硬盘空间等,以确保安装过程顺利且安全。 “配置规则必读.txt”:这是一份关于如何配置和定制八爪鱼采集器的指南,尤其是针对新用户。采集器的配置规则是其核心功能之一,用户可以根据这些规则设置要爬取的网站、指定抓取的数据字段、设定爬取频率以及数据处理方式等。该文档可能包含一系列实例和最佳实践,帮助用户更好地理解和使用八爪鱼采集器的功能。 八爪鱼采集器8.1.24版本提供了一套完整的网页数据采集解决方案,从安装到配置,再到实际采集操作,都有详细的指导文件。用户通过学习和使用该工具,可以高效地从网络上获取大量有价值的信息,为各种业务决策提供
资源下载链接为: https://pan.quark.cn/s/936ae63168d9 在深度学习领域,预训练模型已成为提升模型性能和效率的关键工具。Xception 是 Google 在 2017 年提出的一种深度卷积神经网络架构,其灵感来源于 Inception 系列,但通过去除 Inception 模块中的串联操作,实现了更高效的计算。PyTorch 是一个开源的深度学习框架,提供了众多预训练模型,其中就包括 Xception。本文将深入探讨 Xception 在 PyTorch 中的实现以及预训练权重的加载方法。 Xception 的核心创新在于其“深度可分离卷积”结构。这种卷积分为两步:首先是深度卷积,对每个输入通道独立进行卷积操作;然后是逐点卷积,对深度卷积后的特征图进行通道间的混合。这种分解方式显著减少了计算量,同时保持了模型的强大表达能力。PyTorch 中的 Xception 预训练模型通常包含了在大规模图像分类任务(如 ImageNet)上训练得到的权重。这些权重可用于初始化模型,帮助模型在新任务上更快收敛,尤其在数据量较小时,能够显著提升模型的泛化能力。例如,“xception-b5690688.pth”文件就是一种预训练权重文件,其哈希值用于确保模型参数版本的一致性。 加载 Xception 预训练模型的步骤如下:首先,需要导入 PyTorch 相关库和模块,代码如下: 然后,加载模型并设置是否需要训练所有层: 其中,pretrained=True表示加载预训练权重,若设置为False,则模型将以随机初始化状态创建。如果需要对模型进行微调,可以锁定前面部分层的权重,仅训练自定义的顶层,代码如下: 接下来,可以定义自己的损失函数和优化器,并开始训练。需要注意的是,尽管 Xception 是在 ImageNet 上预训练的,但直接应用于其他任务时,可能
资源下载链接为: https://pan.quark.cn/s/38d378981491 《AC695N声箱SDK 3.0.1版本解析》 本文将对AC695N声箱SDK Release 3.0.1进行深入剖析。该版本于2021年9月15日发布,是专为AC695N型号智能音箱量身定制的软件开发工具包。SDK是开发者构建、测试和优化应用程序的关键资源,而AC695N_soundbox_sdk_release_3.0.1为开发者提供了全面的功能支持,助力高效、稳定的智能音频应用开发。 AC695N是一款为智能音箱设计的高性能处理器,具备卓越的音频处理能力。它集成了多种音频编解码器和数字信号处理器,能够处理多种音频格式,提供高质量的音乐播放和语音交互体验。其硬件平台经过优化设计,在低功耗状态下仍能保持出色性能,适用于家庭、办公等多场景。 驱动程序:AC695N SDK包含针对硬件平台的驱动程序,涵盖音频接口、网络、传感器等驱动,使开发者能够直接操作硬件资源。 库函数:库函数提供大量预编译代码,涉及音频处理、网络通信、文件系统、UI界面等领域,简化开发流程,提升开发效率。 开发工具:包括编译器、调试器、模拟器等,帮助开发者进行代码编写、调试和测试,确保软件在不同环境下的兼容性和稳定性。 示例代码:SDK包含大量示例程序,展示如何使用SDK功能,对初学者来说是快速上手的关键。 从版本号3.0.1来看,这是一次重要更新,可能涉及性能优化、新功能添加和已知问题修复等内容。具体的更新日志可在解压文件后查看,通常会详细列出每个版本的改进点,方便开发者了解和评估是否需要升级。 环境搭建:安装必要的开发工具,配置编译环境,导入SDK库和驱动。 设计应用:根据需求规划应用结构,编写源代码,调用SDK接口实现功能。 编译调试:使用SDK编译工具编译代码,通过调试器检查和修正错误。 测试优化:在模拟器或
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

昌隽艳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值