Random3Dcity 开源项目教程

Random3Dcity 开源项目教程

Random3DcityA basic procedural modelling engine for generating buildings and other features in CityGML项目地址:https://gitcode.com/gh_mirrors/ra/Random3Dcity

1、项目介绍

Random3Dcity 是一个基本的程序化建模引擎,用于在 CityGML 中生成随机的(合成)建筑和其他特征,支持多个细节级别(LOD)。该项目是 Filip Biljecki 博士研究的一部分,旨在解决 3D GIS 研究中的一些不足,如 CityGML 数据集的稀缺性、程序化生成数据的缺失以及公开可用的 CityGML 模型中的错误等问题。

2、项目快速启动

安装

首先,克隆项目仓库到本地:

git clone https://github.com/tudelft3d/Random3Dcity.git
cd Random3Dcity

运行

使用以下命令生成 CityGML 数据:

python generateCityGML.py

3、应用案例和最佳实践

应用案例

Random3Dcity 生成的数据可以用于测试软件和进行各种实验。例如,研究人员可以使用这些数据来验证新的 3D GIS 算法或进行城市规划模拟。

最佳实践

  • 数据验证:在使用生成的数据之前,进行数据验证以确保其质量和准确性。
  • 参数调整:根据具体需求调整生成参数,以获得更符合实际应用的数据。

4、典型生态项目

CityGML 工具集

  • FME:一个强大的数据转换工具,支持 CityGML 格式。
  • 3D City Database:一个开源的 3D 城市模型数据库,支持 CityGML 数据的存储和查询。

通过这些工具和项目的结合使用,可以构建一个完整的 3D 城市模型生态系统,从而更好地支持城市规划和 GIS 研究。

Random3DcityA basic procedural modelling engine for generating buildings and other features in CityGML项目地址:https://gitcode.com/gh_mirrors/ra/Random3Dcity

数据集介绍:无人机视角水域目标检测数据集 一、基础信息 数据集名称:无人机视角水域目标检测数据集 图片数量: - 训练集:2,752张图片 - 验证集:605张图片 分类类别: - Boat(船只):水域交通与作业场景中的常见载具 - Buoy(浮标):水域导航与安全标志物 - Jetski(喷气滑艇):高速水上运动载具 - Kayak(皮划艇):小型人力划桨船只 - Paddle_board(桨板):休闲运动类浮板 - Person(人员):水域活动参与者的目标检测 标注格式: YOLO格式标注,含目标边界框与类别标签,适配主流目标检测框架 数据特性: 无人机航拍视角数据,覆盖不同高度与光照条件的水域场景 二、适用场景 水域智能监测系统开发: 支持构建船只流量统计、异常行为检测等水域管理AI系统 水上救援辅助系统: 用于训练快速定位落水人员与小型船只的检测模型 水上运动安全监控: 适配冲浪区、赛艇场等场景的运动安全预警系统开发 环境生态研究: 支持浮标分布监测、水域人类活动影响分析等研究场景 三、数据集优势 视角独特性: 纯无人机高空视角数据,有效模拟真实航拍检测场景 目标多样性: 覆盖6类水域高频目标,包含动态载具与静态标志物组合 标注精准性: 严格遵循YOLO标注规范,边界框与目标实际尺寸高度吻合 场景适配性: 包含近岸与开阔水域场景,支持模型泛化能力训练 任务扩展性: 适用于目标检测、运动物体追踪等多任务模型开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

水优嵘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值