LHM项目安装与配置指南
1. 项目基础介绍
LHM(Large Human Model)是一个大型动画人类重建模型,能够从单张图片中快速生成三维模型。该项目是PyTorch深度学习框架的实现,主要应用于计算机视觉和图形学领域。
主要编程语言: Python
2. 项目使用的关键技术和框架
- PyTorch:用于构建和训练深度学习模型。
- 3D重建:从单张图片中恢复出三维人体模型。
- 姿态估计:估计人体姿态,用于动画生成。
- 模型优化:使用不同的技术优化模型的大小和运行速度。
3. 项目安装和配置的准备工作
在开始安装之前,请确保您的计算机满足以下要求:
- 操作系统:支持Linux和Windows系统。
- Python版本:Python 3.10。
- CUDA版本:CUDA 11.8 或 CUDA 12.1。
- GPU内存:至少24 GB,以运行LHM-500M模型。
详细安装步骤
克隆项目仓库
首先,您需要克隆项目仓库到本地:
git clone git@github.com:aigc3d/LHM.git
cd LHM
配置虚拟环境
对于Windows用户,打开命令提示符(CMD),导航到项目文件夹,并运行以下命令创建虚拟环境:
python -m venv lhm_env
然后激活虚拟环境:
lhm_env\Scripts\activate
对于Linux用户,使用以下命令:
python3 -m venv lhm_env
source lhm_env/bin/activate
安装依赖
在虚拟环境中安装项目所需的依赖:
- 如果您的CUDA版本是11.8,运行:
pip install rembg
sh ./install_cu118.sh
- 如果您的CUDA版本是12.1,运行:
sh ./install_cu121.sh
下载预训练模型
项目会自动下载预训练模型,如果您需要手动下载,可以使用以下命令:
# 使用HuggingFace下载
from huggingface_hub import snapshot_download
model_dir = snapshot_download(repo_id='3DAIGC/LHM-500M', cache_dir='./pretrained_models')
# 或者使用ModelScope下载
from modelscope import snapshot_download
model_dir = snapshot_download(model_id='Damo_XR_Lab/LHM-500M', cache_dir='./pretrained_models')
运行示例
安装完成后,您可以通过以下命令运行项目示例:
python ./app.py
以上就是LHM项目的详细安装和配置指南。按照上述步骤操作后,您应该能够成功运行该项目。