Doc3D数据集使用教程
项目介绍
Doc3D数据集是由Stony Brook大学CV实验室的Sagnik Das等人贡献的,迄今为止最大、最全面的真实扭曲文档图像数据集。该数据集专注于文档校正,包含100,000张图像及其对应的3D坐标、深度、UV映射、反向映射、反射率和法线等地面真实数据。Doc3D数据集与DewarpNet一同被提出,用于单图像文档校正。
项目快速启动
下载数据集
首先,你需要从GitHub仓库克隆Doc3D数据集:
git clone https://github.com/cvlab-stonybrook/doc3D-dataset.git
配置下载脚本
为了下载数据集,你需要填写用户名和密码。请访问官方提供的Google表单以获取这些信息,并在下载脚本中更新这些凭据:
local uname=****
local pass=****
执行下载
使用以下命令下载整个数据集:
bash download_doc3d.sh
或者指定输出目录:
bash download_doc3d.sh <out_dir>
应用案例和最佳实践
文档校正
Doc3D数据集主要用于文档校正任务。通过使用DewarpNet模型,可以实现单图像文档的校正。以下是一个简单的示例代码:
import cv2
from dewarpnet import DewarpNet
# 初始化模型
model = DewarpNet()
# 加载图像
image = cv2.imread('path_to_image.jpg')
# 执行校正
corrected_image = model.correct(image)
# 保存结果
cv2.imwrite('corrected_image.jpg', corrected_image)
数据可视化
你可以使用提供的demo.py
脚本进行数据可视化:
python demo.py --data_root <path_to_dataset> --folder <specific_folder>
典型生态项目
DewarpNet
DewarpNet是一个与Doc3D数据集紧密相关的项目,用于单图像文档校正。其论文和代码可以在以下链接找到:
- 论文: DewarpNet: Single-Image Document Unwarping With Stacked 3D and 2D Regression Networks
- GitHub: DewarpNet
DocTr
DocTr是另一个使用Doc3D数据集的项目,专注于文档图像处理。你可以通过以下链接了解更多信息:
- GitHub: DocTr
通过这些项目,你可以进一步探索和应用Doc3D数据集在文档处理领域的潜力。