Doc3D数据集使用教程

Doc3D数据集使用教程

doc3D-datasetA hybrid dataset for document unwarping (Paper: https://www3.cs.stonybrook.edu/~cvl/projects/dewarpnet/storage/paper.pdf)项目地址:https://gitcode.com/gh_mirrors/do/doc3D-dataset

项目介绍

Doc3D数据集是由Stony Brook大学CV实验室的Sagnik Das等人贡献的,迄今为止最大、最全面的真实扭曲文档图像数据集。该数据集专注于文档校正,包含100,000张图像及其对应的3D坐标、深度、UV映射、反向映射、反射率和法线等地面真实数据。Doc3D数据集与DewarpNet一同被提出,用于单图像文档校正。

项目快速启动

下载数据集

首先,你需要从GitHub仓库克隆Doc3D数据集:

git clone https://github.com/cvlab-stonybrook/doc3D-dataset.git

配置下载脚本

为了下载数据集,你需要填写用户名和密码。请访问官方提供的Google表单以获取这些信息,并在下载脚本中更新这些凭据:

local uname=****
local pass=****

执行下载

使用以下命令下载整个数据集:

bash download_doc3d.sh

或者指定输出目录:

bash download_doc3d.sh <out_dir>

应用案例和最佳实践

文档校正

Doc3D数据集主要用于文档校正任务。通过使用DewarpNet模型,可以实现单图像文档的校正。以下是一个简单的示例代码:

import cv2
from dewarpnet import DewarpNet

# 初始化模型
model = DewarpNet()

# 加载图像
image = cv2.imread('path_to_image.jpg')

# 执行校正
corrected_image = model.correct(image)

# 保存结果
cv2.imwrite('corrected_image.jpg', corrected_image)

数据可视化

你可以使用提供的demo.py脚本进行数据可视化:

python demo.py --data_root <path_to_dataset> --folder <specific_folder>

典型生态项目

DewarpNet

DewarpNet是一个与Doc3D数据集紧密相关的项目,用于单图像文档校正。其论文和代码可以在以下链接找到:

DocTr

DocTr是另一个使用Doc3D数据集的项目,专注于文档图像处理。你可以通过以下链接了解更多信息:

通过这些项目,你可以进一步探索和应用Doc3D数据集在文档处理领域的潜力。

doc3D-datasetA hybrid dataset for document unwarping (Paper: https://www3.cs.stonybrook.edu/~cvl/projects/dewarpnet/storage/paper.pdf)项目地址:https://gitcode.com/gh_mirrors/do/doc3D-dataset

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晏其潇Aileen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值