Shortscan:一款强大的IIS短文件名枚举工具

Shortscan:一款强大的IIS短文件名枚举工具

项目地址:https://gitcode.com/gh_mirrors/sh/shortscan

项目介绍

Shortscan 是一款专为IIS(Internet Information Services)服务器设计的短文件名枚举工具。它能够快速识别IIS服务器上存在的短文件名,并尝试自动识别对应的完整文件名。Shortscan不仅支持标准的发现方法,还采用了独特的校验和匹配技术,利用Windows的专有短文件名校验和算法来查找长文件名。

项目技术分析

Shortscan基于Go语言开发,充分利用了Go的高并发特性和简洁的语法。其核心功能包括:

  • 短文件名枚举:通过发送特定的HTTP请求,检测服务器上是否存在短文件名。
  • 校验和匹配:利用Windows的短文件名校验和算法,尝试匹配并识别完整文件名。
  • 自定义配置:支持多种自定义选项,如并发请求数、请求超时时间、自定义HTTP头等。

项目及技术应用场景

Shortscan适用于以下场景:

  • 安全测试:在进行渗透测试时,Shortscan可以帮助安全专家快速发现IIS服务器上的敏感文件。
  • 漏洞扫描:通过枚举短文件名,可以检测服务器是否存在短文件名泄露漏洞。
  • 文件管理:在管理IIS服务器时,Shortscan可以帮助管理员快速了解服务器上的文件结构。

项目特点

  • 高效快速:Shortscan利用Go语言的高并发特性,能够在短时间内完成大量文件名的枚举。
  • 智能匹配:独特的校验和匹配技术,能够更准确地识别完整文件名。
  • 灵活配置:支持多种自定义选项,满足不同场景下的需求。
  • 易于使用:简洁的命令行界面,用户可以轻松上手。

使用指南

安装

快速安装

使用最新版本的Go语言进行安装:

go install github.com/bitquark/shortscan/cmd/shortscan@latest
手动安装

通过以下命令进行本地构建和安装:

go get && go build
go install

基本用法

Shortscan的使用非常简单,基本用法如下:

$ shortscan http://example.org/

高级功能

Shortscan提供了丰富的选项,允许用户进行更精细的配置。例如,可以通过--header选项设置自定义HTTP头,通过--concurrency选项设置并发请求数等。

$ shortscan --help

实用工具

Shortscan还附带了一个名为shortutil的实用工具,可以用于生成自定义的彩虹表,或者计算单个文件的校验和。

shortutil wordlist input.txt > output.rainbow
shortutil checksum index.html

结语

Shortscan作为一款强大的IIS短文件名枚举工具,不仅功能强大,而且易于使用。无论你是安全专家、渗透测试人员,还是IIS服务器的管理员,Shortscan都能为你提供极大的帮助。快来试试吧!

shortscan An IIS short filename enumeration tool shortscan 项目地址: https://gitcode.com/gh_mirrors/sh/shortscan

以下是一个简单的Python Astra FDK算法的例子: ```python import astra import numpy as np import matplotlib.pyplot as plt # 定义扫描几何体 vol_geom = astra.create_vol_geom(256, 256) # 定义探测器几何体 det_width = 256 det_size = 256 det_spacing = 1.0 det_angles = np.linspace(0, np.pi, 180, endpoint=False) det_geom = astra.create_detector_geometry_2d(det_width, det_width, det_size, det_size, det_angles, det_spacing) # 生成测试数据 data = np.zeros((len(det_angles), det_size)) for i in range(len(det_angles)): data[i] = np.sin(np.linspace(det_angles[i] - np.pi/2, det_angles[i] + np.pi/2, det_size)) # 创建投影数据 proj_id = astra.create_projector('cuda', det_geom, vol_geom) sinogram_id, sinogram = astra.create_sino(data, proj_id) # 创建重建算法 alg_cfg = astra.astra_dict('FDK_CUDA') alg_cfg['ProjectionDataId'] = sinogram_id alg_cfg['ReconstructionDataId'] = vol_id alg_cfg['option'] = {'ShortScan':True} algorithm_id = astra.algorithm.create(alg_cfg) # 运行重建算法并获取结果 astra.algorithm.run(algorithm_id) reconstruction = astra.data2d.get(vol_id) # 显示重建结果 plt.imshow(reconstruction, cmap='gray') plt.show() # 清理内存 astra.algorithm.delete(algorithm_id) astra.data2d.delete(vol_id) astra.data2d.delete(sinogram_id) astra.projector.delete(proj_id) ``` 这个例子生成一个$256\times256$的二维正弦图像,并使用Astra库中的FDK算法进行重建。最终结果使用matplotlib库中的imshow函数展示出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

纪嫣梦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值