SLC-Net 开源项目教程
SLC-Net 项目地址: https://gitcode.com/gh_mirrors/sl/SLC-Net
1. 项目介绍
SLC-Net 是一个用于半监督医学图像分割的开源项目。该项目基于 PyTorch 框架,旨在通过跨风格一致性和形状感知与局部上下文约束来提高医学图像分割的准确性。SLC-Net 支持多种医学图像数据集,包括 ACDC、Prostate 和 NIH Pancrea 数据集。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中安装了以下依赖:
- PyTorch 版本 >= 0.4.1
- TensorBoardX
- Python == 3.7
- Efficientnet-Pytorch
- Numpy
- Scikit-image
- SimpleITK
- Scipy
- Batchgenerators
2.2 克隆项目
首先,克隆 SLC-Net 项目到本地:
git clone https://github.com/igip-liu/SLC-Net.git
2.3 数据准备
进入项目目录并准备数据:
cd SLC-Net/code/dataloaders
python acdc_data_processing.py
2.4 模型训练
使用以下命令开始模型训练:
cd SLC-Net/code
CUDA_VISIBLE_DEVICES=3 python train_CLB.py --root_path /data/ACDC --exp ACDC/SLC-Net --num_classes 4 --labeled_num 7 --use_block_dice_loss --block_num 4
2.5 模型测试
训练完成后,使用以下命令进行模型测试:
cd SLC-Net/code
CUDA_VISIBLE_DEVICES=0 python test_2D_fully.py --root_path /data/ACDC --exp ACDC/SLC-Net --num_classes 4 --labeled_num 7
3. 应用案例和最佳实践
3.1 医学图像分割
SLC-Net 在医学图像分割领域表现出色,特别是在半监督学习场景下。通过结合跨风格一致性和形状感知与局部上下文约束,SLC-Net 能够有效提高分割精度。
3.2 数据集支持
SLC-Net 支持多种医学图像数据集,包括 ACDC、Prostate 和 NIH Pancrea 数据集。用户可以根据自己的需求选择合适的数据集进行训练和测试。
4. 典型生态项目
4.1 UAMT
UAMT(Unified Annotation and Medical Training)是一个与 SLC-Net 相关的项目,专注于医学图像的统一标注和训练。UAMT 提供了丰富的标注工具和训练框架,与 SLC-Net 结合使用可以进一步提升医学图像分割的效果。
4.2 SSL4MIS
SSL4MIS(Semi-Supervised Learning for Medical Image Segmentation)是另一个与 SLC-Net 相关的项目,专注于半监督学习在医学图像分割中的应用。SSL4MIS 提供了多种半监督学习算法,与 SLC-Net 结合使用可以探索更多半监督学习的潜力。
通过以上模块的介绍,您可以快速了解并上手 SLC-Net 项目,并结合相关生态项目进一步扩展其应用场景。