TimeSeries GAN 项目教程

TimeSeries GAN 项目教程

timeseries_ganA tensorflow implementation of GAN ( exactly InfoGAN or Info GAN ) to one dimensional ( 1D ) time series data.项目地址:https://gitcode.com/gh_mirrors/ti/timeseries_gan

1. 项目目录结构及介绍

timeseries_gan/
├── data/
│   ├── __init__.py
│   ├── data_loader.py
│   └── data_processor.py
├── models/
│   ├── __init__.py
│   ├── generator.py
│   └── discriminator.py
├── utils/
│   ├── __init__.py
│   ├── metrics.py
│   └── visualization.py
├── config/
│   ├── config.yaml
│   └── __init__.py
├── main.py
├── requirements.txt
└── README.md

目录结构介绍

  • data/: 包含数据加载和处理的脚本。

    • data_loader.py: 负责从数据源加载数据。
    • data_processor.py: 负责对数据进行预处理。
  • models/: 包含生成器和判别器的模型定义。

    • generator.py: 定义生成器模型。
    • discriminator.py: 定义判别器模型。
  • utils/: 包含一些辅助函数和工具。

    • metrics.py: 定义评估生成数据质量的指标。
    • visualization.py: 包含数据可视化的函数。
  • config/: 包含项目的配置文件。

    • config.yaml: 存储项目的配置参数。
  • main.py: 项目的启动文件,负责训练和生成时间序列数据。

  • requirements.txt: 列出了项目所需的Python依赖包。

  • README.md: 项目的说明文档。

2. 项目启动文件介绍

main.py

main.py 是项目的启动文件,负责整个项目的训练和生成过程。以下是该文件的主要功能:

  • 导入依赖: 导入所需的Python库和模块。
  • 加载配置: 从 config/config.yaml 文件中加载配置参数。
  • 数据加载与预处理: 使用 data_loader.pydata_processor.py 加载并预处理数据。
  • 模型定义: 使用 models/generator.pymodels/discriminator.py 定义生成器和判别器模型。
  • 训练过程: 定义训练循环,交替训练生成器和判别器。
  • 生成数据: 使用训练好的生成器模型生成时间序列数据。
  • 评估与可视化: 使用 utils/metrics.pyutils/visualization.py 评估生成数据的质量并进行可视化。

3. 项目配置文件介绍

config/config.yaml

config.yaml 文件存储了项目的配置参数,以下是一些常见的配置项:

# 数据配置
data:
  input_path: "data/raw_data.csv"
  output_path: "data/processed_data.csv"

# 模型配置
model:
  latent_dim: 100
  generator_lr: 0.0002
  discriminator_lr: 0.0002

# 训练配置
training:
  epochs: 200
  batch_size: 64
  save_interval: 10

# 其他配置
misc:
  random_seed: 42

配置项介绍

  • data: 数据相关的配置。

    • input_path: 原始数据文件的路径。
    • output_path: 预处理后数据文件的保存路径。
  • model: 模型相关的配置。

    • latent_dim: 生成器输入的潜在空间的维度。
    • generator_lr: 生成器的学习率。
    • discriminator_lr: 判别器的学习率。
  • training: 训练相关的配置。

    • epochs: 训练的总轮数。
    • batch_size: 每个批次的数据量。
    • save_interval: 每隔多少轮保存一次模型。
  • misc: 其他配置。

    • random_seed: 随机种子,用于确保实验的可重复性。

通过修改 config.yaml 文件中的参数,可以调整项目的运行行为,例如更改数据路径、调整模型超参数等。

timeseries_ganA tensorflow implementation of GAN ( exactly InfoGAN or Info GAN ) to one dimensional ( 1D ) time series data.项目地址:https://gitcode.com/gh_mirrors/ti/timeseries_gan

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

井章博Church

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值