TimeSeries GAN 项目教程
1. 项目目录结构及介绍
timeseries_gan/
├── data/
│ ├── __init__.py
│ ├── data_loader.py
│ └── data_processor.py
├── models/
│ ├── __init__.py
│ ├── generator.py
│ └── discriminator.py
├── utils/
│ ├── __init__.py
│ ├── metrics.py
│ └── visualization.py
├── config/
│ ├── config.yaml
│ └── __init__.py
├── main.py
├── requirements.txt
└── README.md
目录结构介绍
-
data/: 包含数据加载和处理的脚本。
data_loader.py
: 负责从数据源加载数据。data_processor.py
: 负责对数据进行预处理。
-
models/: 包含生成器和判别器的模型定义。
generator.py
: 定义生成器模型。discriminator.py
: 定义判别器模型。
-
utils/: 包含一些辅助函数和工具。
metrics.py
: 定义评估生成数据质量的指标。visualization.py
: 包含数据可视化的函数。
-
config/: 包含项目的配置文件。
config.yaml
: 存储项目的配置参数。
-
main.py: 项目的启动文件,负责训练和生成时间序列数据。
-
requirements.txt: 列出了项目所需的Python依赖包。
-
README.md: 项目的说明文档。
2. 项目启动文件介绍
main.py
main.py
是项目的启动文件,负责整个项目的训练和生成过程。以下是该文件的主要功能:
- 导入依赖: 导入所需的Python库和模块。
- 加载配置: 从
config/config.yaml
文件中加载配置参数。 - 数据加载与预处理: 使用
data_loader.py
和data_processor.py
加载并预处理数据。 - 模型定义: 使用
models/generator.py
和models/discriminator.py
定义生成器和判别器模型。 - 训练过程: 定义训练循环,交替训练生成器和判别器。
- 生成数据: 使用训练好的生成器模型生成时间序列数据。
- 评估与可视化: 使用
utils/metrics.py
和utils/visualization.py
评估生成数据的质量并进行可视化。
3. 项目配置文件介绍
config/config.yaml
config.yaml
文件存储了项目的配置参数,以下是一些常见的配置项:
# 数据配置
data:
input_path: "data/raw_data.csv"
output_path: "data/processed_data.csv"
# 模型配置
model:
latent_dim: 100
generator_lr: 0.0002
discriminator_lr: 0.0002
# 训练配置
training:
epochs: 200
batch_size: 64
save_interval: 10
# 其他配置
misc:
random_seed: 42
配置项介绍
-
data: 数据相关的配置。
input_path
: 原始数据文件的路径。output_path
: 预处理后数据文件的保存路径。
-
model: 模型相关的配置。
latent_dim
: 生成器输入的潜在空间的维度。generator_lr
: 生成器的学习率。discriminator_lr
: 判别器的学习率。
-
training: 训练相关的配置。
epochs
: 训练的总轮数。batch_size
: 每个批次的数据量。save_interval
: 每隔多少轮保存一次模型。
-
misc: 其他配置。
random_seed
: 随机种子,用于确保实验的可重复性。
通过修改 config.yaml
文件中的参数,可以调整项目的运行行为,例如更改数据路径、调整模型超参数等。