AcFunDown 项目使用教程

AcFunDown 项目使用教程

AcFunDown 包含PC端UI界面的A站 视频下载器。支持收藏夹、UP主视频批量下载 😳仅供交流学习使用喔 AcFunDown 项目地址: https://gitcode.com/gh_mirrors/ac/AcFunDown

1. 项目目录结构及介绍

AcFunDown 项目的目录结构如下:

AcFunDown/
├── libs/
│   ├── ffmpeg.exe
│   └── ...
├── release/
│   ├── ILikeAcFun.jar
│   └── ...
├── src/
│   ├── Main.java
│   └── ...
├── .gitignore
├── LICENSE
├── README.md
├── UPDATE.md
├── package.bat
└── package.sh

目录结构介绍

  • libs/: 包含项目依赖的第三方库文件,如 ffmpeg.exe 用于视频转码。
  • release/: 包含项目的可执行文件,如 ILikeAcFun.jar
  • src/: 包含项目的源代码文件,如 Main.java 是项目的启动文件。
  • .gitignore: Git 忽略文件,指定哪些文件或目录不需要被 Git 管理。
  • LICENSE: 项目的开源许可证文件,本项目使用 GPL-3.0 许可证。
  • README.md: 项目的介绍文档,包含项目的基本信息和使用说明。
  • UPDATE.md: 项目的更新日志文件,记录项目的版本更新信息。
  • package.bat: Windows 平台下的打包脚本。
  • package.sh: Linux/Mac 平台下的打包脚本。

2. 项目启动文件介绍

项目的启动文件是 src/Main.java,该文件是 AcFunDown 的主入口文件。通过运行该文件,可以启动 AcFunDown 的 UI 界面,用户可以通过界面进行视频下载操作。

启动步骤

  1. 确保已安装 Java 运行环境(JRE)。

  2. 打开命令行工具,导航到项目根目录。

  3. 运行以下命令启动项目:

    java -Dfile.encoding=utf-8 -jar release/ILikeAcFun.jar
    

    对于非 Windows 用户,可以使用以下命令:

    javaw -Dfile.encoding=utf-8 -jar release/ILikeAcFun.jar
    

3. 项目配置文件介绍

AcFunDown 项目没有独立的配置文件,所有的配置都是通过 UI 界面进行设置的。用户可以在启动后的 UI 界面中进行以下配置:

  • 登录配置: 支持扫码登录,用户可以通过扫码登录 AcFun 账号。
  • 下载配置: 用户可以设置下载路径、选择下载的视频质量、音轨等。
  • 批量下载配置: 支持收藏夹和 UP 主视频的批量下载,用户可以输入相应的链接进行批量下载。

配置示例

  1. 登录配置:

    • 在 UI 界面中点击“扫码登录”按钮,使用手机扫描二维码进行登录。
  2. 下载配置:

    • 在 UI 界面中选择“下载路径”,设置视频的保存路径。
    • 选择视频质量(如高清、标清等)。
  3. 批量下载配置:

    • 输入收藏夹或 UP 主视频的链接,点击“开始下载”按钮进行批量下载。

通过以上配置,用户可以方便地进行视频下载操作。

AcFunDown 包含PC端UI界面的A站 视频下载器。支持收藏夹、UP主视频批量下载 😳仅供交流学习使用喔 AcFunDown 项目地址: https://gitcode.com/gh_mirrors/ac/AcFunDown

数据集介绍:高空视角飞机跑道船只目标检测数据集 一、基础信息 数据集名称:高空视角飞机跑道船只目标检测数据集 图片数量: - 训练集:3,375张图片 - 验证集:331张图片 - 测试集:164张图片 分类类别: - airplane:涵盖多种机型的高空目标检测样本 - runway:包含机场跑道及地面辅助设施的关键区域标注 - ship:覆盖不同尺寸和航向的船只检测样本 标注格式: YOLO格式,包含目标检测所需的归一化坐标及类别标签 数据特性: - 无人机及高空平台采集视角 - 覆盖陆地、海洋、机场等多场景 - 包含目标小尺寸、密集排列等真实检测挑战 二、适用场景 航空交通管理系统开发: 支持构建自动识别空中飞行器与地面跑道的AI模型,提升空域管理效率 无人机自主导航系统: 为无人机提供机场跑道识别与障碍物避让的基准训练数据 港口船舶监控解决方案: 训练船舶检测模型,支持海上交通流量统计与异常行为识别 遥感图像分析工具: 适用于卫星/航拍影像中的基础设施识别与地理信息系统开发 三、数据集优势 多目标协同检测能力: 同时包含空中目标(飞机)、地面设施(跑道)、海上目标(船舶)的关联场景数据 高适应性标注: 兼容YOLOv5/YOLOv8等主流目标检测框架,支持快速模型迭代 视角多样性: 涵盖不同高度、角度、光照条件下的无人机及高空拍摄视角 专业数据分割: 严格划分训练集/验证集/测试集,符合工业级模型开发标准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤中岱Wonderful

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值