CLIP-based-NSFW-Detector 项目使用教程

CLIP-based-NSFW-Detector 项目使用教程

CLIP-based-NSFW-Detector CLIP-based-NSFW-Detector 项目地址: https://gitcode.com/gh_mirrors/cl/CLIP-based-NSFW-Detector

1. 项目目录结构及介绍

CLIP-based-NSFW-Detector/
├── docs/
│   └── README.md
├── clip_autokeras_binary_nsfw.zip
├── clip_autokeras_nsfw_b32.zip
├── h14_nsfw.pth
├── h14_nsfw_model.py
├── LICENSE.md
├── nsfw-clip.py
├── nsfw_testset.zip
├── safety_settings.yml
├── violence_detection_vit_b_32.npy
└── violence_detection_vit_l_14.npy

目录结构说明

  • docs/: 包含项目的README文件,提供了项目的概述和使用说明。
  • clip_autokeras_binary_nsfw.zip: 包含用于检测NSFW内容的二进制Autokeras模型。
  • clip_autokeras_nsfw_b32.zip: 包含用于检测NSFW内容的Autokeras模型,适用于ViT-B/32模型。
  • h14_nsfw.pth: 预训练的NSFW检测模型文件。
  • h14_nsfw_model.py: 包含加载和使用NSFW检测模型的Python脚本。
  • LICENSE.md: 项目的MIT许可证文件。
  • nsfw-clip.py: 用于NSFW检测的主要Python脚本。
  • nsfw_testset.zip: 包含手动标注的测试数据集。
  • safety_settings.yml: 安全设置的配置文件。
  • violence_detection_vit_b_32.npy: 用于暴力检测的ViT-B/32模型嵌入文件。
  • violence_detection_vit_l_14.npy: 用于暴力检测的ViT-L/14模型嵌入文件。

2. 项目启动文件介绍

nsfw-clip.py

nsfw-clip.py 是项目的主要启动文件,负责加载NSFW检测模型并进行图像嵌入的预测。以下是该文件的主要功能:

  • 加载模型: 通过调用load_safety_model函数加载预训练的NSFW检测模型。
  • 预测NSFW值: 使用加载的模型对图像嵌入进行预测,返回一个介于0和1之间的值,1表示NSFW。

示例代码

from nsfw-clip import load_safety_model

# 加载模型
safety_model = load_safety_model("ViT-L/14")

# 预测NSFW值
nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0])

3. 项目的配置文件介绍

safety_settings.yml

safety_settings.yml 是项目的配置文件,用于配置NSFW检测模型的相关参数。以下是该文件的主要内容:

model_path: "clip_autokeras_binary_nsfw.zip"
clip_model: "ViT-L/14"
batch_size: 1024

配置文件说明

  • model_path: 指定NSFW检测模型的路径。
  • clip_model: 指定使用的CLIP模型类型,如ViT-L/14
  • batch_size: 指定批处理大小,用于模型预测时的批量处理。

通过修改safety_settings.yml文件中的参数,可以调整NSFW检测模型的行为和性能。

CLIP-based-NSFW-Detector CLIP-based-NSFW-Detector 项目地址: https://gitcode.com/gh_mirrors/cl/CLIP-based-NSFW-Detector

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤中岱Wonderful

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值