CLIP-based-NSFW-Detector 项目使用教程
CLIP-based-NSFW-Detector 项目地址: https://gitcode.com/gh_mirrors/cl/CLIP-based-NSFW-Detector
1. 项目目录结构及介绍
CLIP-based-NSFW-Detector/
├── docs/
│ └── README.md
├── clip_autokeras_binary_nsfw.zip
├── clip_autokeras_nsfw_b32.zip
├── h14_nsfw.pth
├── h14_nsfw_model.py
├── LICENSE.md
├── nsfw-clip.py
├── nsfw_testset.zip
├── safety_settings.yml
├── violence_detection_vit_b_32.npy
└── violence_detection_vit_l_14.npy
目录结构说明
- docs/: 包含项目的README文件,提供了项目的概述和使用说明。
- clip_autokeras_binary_nsfw.zip: 包含用于检测NSFW内容的二进制Autokeras模型。
- clip_autokeras_nsfw_b32.zip: 包含用于检测NSFW内容的Autokeras模型,适用于ViT-B/32模型。
- h14_nsfw.pth: 预训练的NSFW检测模型文件。
- h14_nsfw_model.py: 包含加载和使用NSFW检测模型的Python脚本。
- LICENSE.md: 项目的MIT许可证文件。
- nsfw-clip.py: 用于NSFW检测的主要Python脚本。
- nsfw_testset.zip: 包含手动标注的测试数据集。
- safety_settings.yml: 安全设置的配置文件。
- violence_detection_vit_b_32.npy: 用于暴力检测的ViT-B/32模型嵌入文件。
- violence_detection_vit_l_14.npy: 用于暴力检测的ViT-L/14模型嵌入文件。
2. 项目启动文件介绍
nsfw-clip.py
nsfw-clip.py
是项目的主要启动文件,负责加载NSFW检测模型并进行图像嵌入的预测。以下是该文件的主要功能:
- 加载模型: 通过调用
load_safety_model
函数加载预训练的NSFW检测模型。 - 预测NSFW值: 使用加载的模型对图像嵌入进行预测,返回一个介于0和1之间的值,1表示NSFW。
示例代码
from nsfw-clip import load_safety_model
# 加载模型
safety_model = load_safety_model("ViT-L/14")
# 预测NSFW值
nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0])
3. 项目的配置文件介绍
safety_settings.yml
safety_settings.yml
是项目的配置文件,用于配置NSFW检测模型的相关参数。以下是该文件的主要内容:
model_path: "clip_autokeras_binary_nsfw.zip"
clip_model: "ViT-L/14"
batch_size: 1024
配置文件说明
- model_path: 指定NSFW检测模型的路径。
- clip_model: 指定使用的CLIP模型类型,如
ViT-L/14
。 - batch_size: 指定批处理大小,用于模型预测时的批量处理。
通过修改safety_settings.yml
文件中的参数,可以调整NSFW检测模型的行为和性能。
CLIP-based-NSFW-Detector 项目地址: https://gitcode.com/gh_mirrors/cl/CLIP-based-NSFW-Detector
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考