《icyChessZero:基于Alpha Zero的中国象棋AI项目指南》
icyChessZero 项目地址: https://gitcode.com/gh_mirrors/ic/icyChessZero
📃 项目概述
icyChessZero 是一个灵感源自 Alpha Go Zero 的项目,旨在通过深度神经网络训练出能够达到中等以上人类水平的中国象棋AI。项目当前处于活跃开发阶段,并寻求社区的支持共同推进。本教程将引导您了解其内部结构、关键文件及其应用方法。
📁 目录结构及介绍
icyChessZero的项目结构设计清晰,便于维护和扩展,主要包含以下几个核心部分:
-
根目录:
cchess
,cchess_zero
:包含了实现中国象棋游戏逻辑的代码。common
:通用工具函数集合。config
:项目配置文件所在,定义了各种运行参数。data
:用于存储训练数据或结果的地方。distributed
: 分布式训练相关脚本和配置。experiments/celery_exp
:特定实验或分布式任务管理代码。gameplays
:可能存放自对弈的游戏记录。imgs
,ipynbs
,nets
,scripts
:分别是图像资源、Jupyter Notebook文件、网络模型定义和辅助脚本。LICENSE
,README.md
:许可证文件和项目读我文档。
-
关键文件快速导航:
LICENSE
: 许可证信息,MIT协议。README.md
: 项目介绍、依赖项、训练要求和参与贡献的指导。config/conf.py
: 核心配置文件,调整模型、训练等关键参数。
💾 启动文件介绍
icyChessZero并未直接指出单一的“启动文件”,但分布式训练的关键在于脚本的执行。对于想要运行此项目的开发者,有两种主要方式:
-
个人机器运行:如果只是测试或单机运行,可能需从
scripts
目录出发,调用相应的Python脚本。 -
加入或自建分布式集群:
- 对于加入已有的集群(尤其针对北京邮电大学内的参与者),需遵循文档中的说明,调用类似
multithread_start.bat
(Windows)或multithread_start.sh
(Linux)的脚本来启动服务,指定线程数、GPU核心和Python环境。
- 对于加入已有的集群(尤其针对北京邮电大学内的参与者),需遵循文档中的说明,调用类似
🔌 配置文件介绍
config/conf.py
: 这是最关键的配置文件,包含了训练的基本设置,例如网络架构、学习率、自我对弈次数、模型保存路径等。修改该文件可以根据自己的硬件条件和研究目的调整训练策略。特别关注model_params
,train_params
,env_params
这些部分,它们直接影响训练过程和结果。
示例配置修改
- 增加自我对弈的步数,可在
train_params
中修改num_simulations
。 - 调整模型的学习率,可在
model_params
里找到相关的参数。 - 修改存储棋谱或模型的路径,确保与您的系统相匹配。
本教程仅为入门级简介,深入学习和参与项目还需要参考项目的详细文档和源码。加入该项目之前,请务必与项目负责人联系,获取最新的代码版本和协作指南,以保证代码同步和一致性。希望通过您的参与,icyChessZero能够更快达成其目标,为中国象棋AI领域做出贡献。
icyChessZero 项目地址: https://gitcode.com/gh_mirrors/ic/icyChessZero