CLEAR项目安装与配置指南

CLEAR项目安装与配置指南

CLEAR Official PyTorch implementation of paper "CLEAR: Conv-Like Linearization Revs Pre-Trained Diffusion Transformers Up". CLEAR 项目地址: https://gitcode.com/gh_mirrors/clea/CLEAR

1. 项目基础介绍

CLEAR项目是一个基于PyTorch的开源项目,旨在通过一种名为CLEAR的策略来线性化预训练的扩散变换器,如FLUX和SD3。该项目通过引入一种类似卷积的局部注意力机制,减少了生成高分辨率图像时的计算复杂度。主要编程语言为Python。

2. 项目使用的关键技术和框架

  • PyTorch:一个流行的开源机器学习库,用于应用如计算机视觉和自然语言处理等领域的深度学习。
  • Diffusers:一个基于PyTorch的库,用于简化扩散模型的训练和推理。
  • DeepSpeed:一个由微软开发的优化库,用于加速深度学习训练。
  • FlexAttention:一种注意力机制的实现,用于提高效率。

3. 项目安装和配置的准备工作与详细步骤

准备工作

  • 确保您的计算机上已安装Python(版本至少为3.12)。
  • 安装conda,用于环境管理(如果使用的是pip管理环境,可以跳过这一步)。
  • 准备一个合适的GPU,至少48GB的显存用于高分辨率图像的生成。

安装步骤

创建和激活虚拟环境

打开命令行界面,执行以下命令来创建一个新的虚拟环境:

conda create -n CLEAR python=3.12
conda activate CLEAR

如果您使用的是pip而非conda,请确保您的Python环境已经设置好。

安装依赖

在虚拟环境中,使用以下命令安装项目所需的依赖:

pip install -r requirements.txt
克隆项目仓库

将项目仓库克隆到您的项目目录中:

git clone https://github.com/Huage001/CLEAR.git
下载模型权重

根据您需要使用的模型变体,从提供的链接中下载相应的权重文件,并将其放置在ckpt目录下。

配置训练

在多个.sh文件中配置训练路径(例如/path/to/t2i_1024),并下载训练图像:

tar -xvf data_000000.tar -C /path/to/t2i_1024

执行以下脚本以缓存文本嵌入和VAE特征(可选但推荐):

bash cache_prompt_embeds.sh
bash cache_latent_codes.sh
开始训练

最后,执行以下脚本来开始训练:

bash distill.sh

默认情况下,脚本使用4个具有80GB显存的GPU,train_batch_size=2gradient_accumulation_steps=4。根据您的硬件配置,您可以在distill.shdeepspeed_config.yaml文件中进行相应的调整。

按照以上步骤操作,您应该能够成功安装和配置CLEAR项目。

CLEAR Official PyTorch implementation of paper "CLEAR: Conv-Like Linearization Revs Pre-Trained Diffusion Transformers Up". CLEAR 项目地址: https://gitcode.com/gh_mirrors/clea/CLEAR

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丁璋英Lester

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值