CLEAR项目安装与配置指南
1. 项目基础介绍
CLEAR项目是一个基于PyTorch的开源项目,旨在通过一种名为CLEAR的策略来线性化预训练的扩散变换器,如FLUX和SD3。该项目通过引入一种类似卷积的局部注意力机制,减少了生成高分辨率图像时的计算复杂度。主要编程语言为Python。
2. 项目使用的关键技术和框架
- PyTorch:一个流行的开源机器学习库,用于应用如计算机视觉和自然语言处理等领域的深度学习。
- Diffusers:一个基于PyTorch的库,用于简化扩散模型的训练和推理。
- DeepSpeed:一个由微软开发的优化库,用于加速深度学习训练。
- FlexAttention:一种注意力机制的实现,用于提高效率。
3. 项目安装和配置的准备工作与详细步骤
准备工作
- 确保您的计算机上已安装Python(版本至少为3.12)。
- 安装conda,用于环境管理(如果使用的是pip管理环境,可以跳过这一步)。
- 准备一个合适的GPU,至少48GB的显存用于高分辨率图像的生成。
安装步骤
创建和激活虚拟环境
打开命令行界面,执行以下命令来创建一个新的虚拟环境:
conda create -n CLEAR python=3.12
conda activate CLEAR
如果您使用的是pip而非conda,请确保您的Python环境已经设置好。
安装依赖
在虚拟环境中,使用以下命令安装项目所需的依赖:
pip install -r requirements.txt
克隆项目仓库
将项目仓库克隆到您的项目目录中:
git clone https://github.com/Huage001/CLEAR.git
下载模型权重
根据您需要使用的模型变体,从提供的链接中下载相应的权重文件,并将其放置在ckpt
目录下。
配置训练
在多个.sh
文件中配置训练路径(例如/path/to/t2i_1024
),并下载训练图像:
tar -xvf data_000000.tar -C /path/to/t2i_1024
执行以下脚本以缓存文本嵌入和VAE特征(可选但推荐):
bash cache_prompt_embeds.sh
bash cache_latent_codes.sh
开始训练
最后,执行以下脚本来开始训练:
bash distill.sh
默认情况下,脚本使用4个具有80GB显存的GPU,train_batch_size=2
和gradient_accumulation_steps=4
。根据您的硬件配置,您可以在distill.sh
和deepspeed_config.yaml
文件中进行相应的调整。
按照以上步骤操作,您应该能够成功安装和配置CLEAR项目。