FCRN-DepthPrediction 项目使用教程

FCRN-DepthPrediction 项目使用教程

FCRN-DepthPrediction项目地址:https://gitcode.com/gh_mirrors/fc/FCRN-DepthPrediction

目录结构及介绍

FCRN-DepthPrediction 项目的目录结构如下:

FCRN-DepthPrediction/
├── data/
├── matlab/
├── models/
├── utils/
├── README.md
├── LICENSE
├── requirements.txt
├── main.py
└── evaluateNYU.m

详细介绍

  • data/: 存放数据集文件的目录。
  • matlab/: 包含使用 MatConvNet 工具箱的 MATLAB 代码。
  • models/: 存放预训练模型的目录。
  • utils/: 包含辅助函数的目录。
  • README.md: 项目说明文档。
  • LICENSE: 项目许可证文件。
  • requirements.txt: 项目依赖的 Python 包列表。
  • main.py: 项目的主启动文件。
  • evaluateNYU.m: MATLAB 代码,用于评估 NYU 数据集。

项目的启动文件介绍

main.py

main.py 是项目的主启动文件,用于训练和预测深度图。以下是该文件的主要功能:

  • 训练模型: 使用指定数据集训练模型。
  • 预测深度图: 对输入图像进行深度预测。

使用示例

python main.py --dataset nyu

上述命令将使用 NYU 数据集进行训练。

项目的配置文件介绍

requirements.txt

requirements.txt 文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装这些依赖:

pip install -r requirements.txt

evaluateNYU.m

evaluateNYU.m 是 MATLAB 代码,用于评估 NYU 数据集。在使用该文件之前,需要确保 MatConvNet 工具箱已正确安装并配置。

配置 MatConvNet

  1. 下载并编译 MatConvNet:

    • 下载 MatConvNet 工具箱并编译,确保版本不低于 1.0-beta20。
    • 根据需要配置 GPU 支持。
  2. 修改路径:

    • evaluateNYU.mevaluateMake3D.m 文件中,修改 matconvnet_path 变量,指向 MatConvNet 工具箱的正确路径。
matconvnet_path = '/path/to/matconvnet-1.0-beta20';
  1. 运行评估:
    • 运行 evaluateNYU.mevaluateMake3D.m 文件,自动下载所需数据和模型(如果尚未下载)。
evaluateNYU;

通过以上步骤,您可以成功配置并运行 FCRN-DepthPrediction 项目。

FCRN-DepthPrediction项目地址:https://gitcode.com/gh_mirrors/fc/FCRN-DepthPrediction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

韶承孟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值