FCRN-DepthPrediction 项目使用教程
FCRN-DepthPrediction项目地址:https://gitcode.com/gh_mirrors/fc/FCRN-DepthPrediction
目录结构及介绍
FCRN-DepthPrediction 项目的目录结构如下:
FCRN-DepthPrediction/
├── data/
├── matlab/
├── models/
├── utils/
├── README.md
├── LICENSE
├── requirements.txt
├── main.py
└── evaluateNYU.m
详细介绍
- data/: 存放数据集文件的目录。
- matlab/: 包含使用 MatConvNet 工具箱的 MATLAB 代码。
- models/: 存放预训练模型的目录。
- utils/: 包含辅助函数的目录。
- README.md: 项目说明文档。
- LICENSE: 项目许可证文件。
- requirements.txt: 项目依赖的 Python 包列表。
- main.py: 项目的主启动文件。
- evaluateNYU.m: MATLAB 代码,用于评估 NYU 数据集。
项目的启动文件介绍
main.py
main.py
是项目的主启动文件,用于训练和预测深度图。以下是该文件的主要功能:
- 训练模型: 使用指定数据集训练模型。
- 预测深度图: 对输入图像进行深度预测。
使用示例
python main.py --dataset nyu
上述命令将使用 NYU 数据集进行训练。
项目的配置文件介绍
requirements.txt
requirements.txt
文件列出了项目运行所需的 Python 包及其版本。使用以下命令安装这些依赖:
pip install -r requirements.txt
evaluateNYU.m
evaluateNYU.m
是 MATLAB 代码,用于评估 NYU 数据集。在使用该文件之前,需要确保 MatConvNet 工具箱已正确安装并配置。
配置 MatConvNet
-
下载并编译 MatConvNet:
- 下载 MatConvNet 工具箱并编译,确保版本不低于 1.0-beta20。
- 根据需要配置 GPU 支持。
-
修改路径:
- 在
evaluateNYU.m
和evaluateMake3D.m
文件中,修改matconvnet_path
变量,指向 MatConvNet 工具箱的正确路径。
- 在
matconvnet_path = '/path/to/matconvnet-1.0-beta20';
- 运行评估:
- 运行
evaluateNYU.m
或evaluateMake3D.m
文件,自动下载所需数据和模型(如果尚未下载)。
- 运行
evaluateNYU;
通过以上步骤,您可以成功配置并运行 FCRN-DepthPrediction 项目。
FCRN-DepthPrediction项目地址:https://gitcode.com/gh_mirrors/fc/FCRN-DepthPrediction