Clinical Knowledge Graph (CKG) 使用教程
1. 项目介绍
Clinical Knowledge Graph(CKG)是一个开源平台,其主要目标是构建一个图数据库,包含实验数据以及从多种生物医学数据库中导入的数据。CKG 通过自动化知识发现,利用图中包含的所有信息,旨在加速精准医疗中的决策过程。
CKG 目前包含超过 1600 万个节点和 2.2 亿个关系,涵盖了相关的实验数据、公共数据库和文献。它还集成了最新的统计和机器学习算法,极大地加速了典型蛋白质组学工作流程的分析和解释。
2. 项目快速启动
在开始之前,请确保您的系统满足以下要求:
- 至少 80 GB 的磁盘空间
- 安装了 Git(如果未安装,请参考安装指南)
克隆项目
打开终端窗口,运行以下命令克隆 CKG 仓库:
$ git clone https://github.com/MannLabs/CKG.git
这将创建一个名为 "CKG" 的新文件夹。
安装依赖
进入 CKG 文件夹,使用以下命令安装依赖:
$ cd CKG
$ pip install -r requirements.txt
初始化数据库
执行以下命令以初始化数据库:
$ ./docker_entrypoint.sh
运行示例
运行以下命令以启动一个示例应用程序:
$ python example.py
3. 应用案例和最佳实践
CKG 可以用于多种生物医学研究场景,以下是一些应用案例和最佳实践:
- 蛋白质组数据分析:CKG 提供了工具来分析蛋白质组数据,并与临床数据集成,以支持精准医疗中的决策。
- 生物标记物研究:研究人员可以使用 CKG 来识别和验证生物标记物,进而推进疾病诊断和治疗。
- 药物发现:CKG 中的数据可以用来发现和验证新的药物靶点。
4. 典型生态项目
CKG 是一个开放的生态系统,以下是一些与 CKG 相关的典型项目:
- UniProt:提供蛋白质序列和功能信息。
- STRING:蛋白质-蛋白质相互作用数据库。
- DrugBank:药物信息数据库。
- DisGeNET:疾病相关基因和药物信息数据库。
通过整合这些资源,CKG 为用户提供了一个全面的平台,用于分析和挖掘生物医学知识。