WanControl项目教程

WanControl项目教程

WanControl Wan2.1 with Controlnet WanControl 项目地址: https://gitcode.com/gh_mirrors/wa/WanControl

1. 项目介绍

WanControl是一个开源项目,基于阿里巴巴的Wan2.1视频生成模型,集成了ControlNet技术。ControlNet是一种可控图像和视频合成的先进技术,它可以通过控制信号(如图像或视频)对生成的内容进行精细控制。WanControl项目旨在通过集成ControlNet,提升Wan2.1模型在视频生成方面的可控性和灵活性。

2. 项目快速启动

克隆仓库

首先,需要克隆WanControl的GitHub仓库到本地环境:

git clone https://github.com/shalfun/WanControl.git
cd WanControl

安装依赖

接着,安装项目所需的依赖:

pip install -e .

准备数据

数据集应该按照以下结构组织:

data/example_dataset/
├── metadata.csv
└── train
    ├── video_00001.mp4
    ├── video_00001_c.mp4
    ├── image_00002.jpg
    └── image_00002_c.jpg

metadata.csv文件应包含以下列:

| 列名 | 描述 | | ------------ | ------------------ | | file_name | 视频或图像文件名 | | text | 文件描述 | | control_name | 控制文件名 |

下载模型

以下是使用modelscope-cli下载模型的示例:

pip install modelscope
modelscope download Wan-AI/Wan2.1-T2V-1.3B --local_dir your/model/path/Wan2.1-T2V-1.3B

或者使用huggingface-cli

pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./Wan2.1-T2V-14B

确保以下检查点在指定路径下可用:

  • 文本编码器:models_t5_umt5-xxl-enc-bf16.pth
  • VAE:Wan2.1_VAE.pth
  • DiT模型:diffusion_pytorch_model.safetensors

预处理

运行预处理脚本准备训练数据:

CUDA_VISIBLE_DEVICES="0" python examples/wanvideo/train_wan_t2v.py --task data_process --dataset_path data/example_dataset --output_path ./models --text_encoder_path "your/model/path/Wan2.1-T2V-1.3B/models_t5_umt5-xxl-enc-bf16.pth" --vae_path "your/model/path/Wan2.1-T2V-1.3B/Wan2.1_VAE.pth" --tiled --num_frames 81 --height 480 --width 832

预处理后,数据集将包括.tensors.pth文件。

训练

使用以下命令训练带有ControlNet的模型:

python examples/wanvideo/train_wan_t2v.py --task train --train_architecture full --dataset_path data/example_dataset --output_path ./ --dit_path "your/model/path/Wan2.1-T2V-1.3B/diffusion_pytorch_model.safetensors" --steps_per_epoch 500 --max_epochs 1000 --learning_rate 4e-5 --accumulate_grad_batches 1 --use_gradient_checkpointing --dataloader_num_workers 8 --control_layers 15

注意:当control_layers设置为15(默认值)时,由于大多数参数被冻结,总体内存使用量约为26G。如果GPU内存有限,可以考虑减少control_layers的数量。

3. 应用案例和最佳实践

(此处应根据实际项目情况提供应用案例和最佳实践,由于缺乏具体信息,这里不展开详细内容。)

4. 典型生态项目

(同样,这里需要根据实际项目情况列出与WanControl项目相关的典型生态项目,由于缺乏具体信息,这里不展开详细内容。)

WanControl Wan2.1 with Controlnet WanControl 项目地址: https://gitcode.com/gh_mirrors/wa/WanControl

很不错的一套站群系统源码,后台配置采集节点,输入目标站地址即可全自动智能转换自动全站采集!支持 https、支持 POST 获取、支持搜索、支持 cookie、支持代理、支持破解防盗链、支持破解防采集 全自动分析,内外链接自动转换、图片地址、css、js,自动分析 CSS 内的图片使得页面风格不丢失: 广告标签,方便在规则里直接替换广告代码 支持自定义标签,标签可自定义内容、自由截取、内容正则截取。可以放在模板里,也可以在规则里替换 支持自定义模板,可使用标签 diy 个性模板,真正做到内容上移花接木 调试模式,可观察采集性能,便于发现和解决各种错误 多条采集规则一键切换,支持导入导出 内置强大替换和过滤功能,标签过滤、站内外过滤、字符串替换、等等 IP 屏蔽功能,屏蔽想要屏蔽 IP 地址让它无法访问 ****高级功能*****· url 过滤功能,可过滤屏蔽不采集指定链接· 伪原创,近义词替换有利于 seo· 伪静态,url 伪静态化,有利于 seo· 自动缓存自动更新,可设置缓存时间达到自动更新,css 缓存· 支持演示有阿三源码简繁体互转· 代理 IP、伪造 IP、随机 IP、伪造 user-agent、伪造 referer 来路、自定义 cookie,以便应对防采集措施· url 地址加密转换,个性化 url,让你的 url 地址与众不同· 关键词内链功能· 还有更多功能等你发现…… 程序使用非常简单,仅需在后台输入一个域名即可建站,不限子域名,站群利器,无授权,无绑定限制,使用后台功能可对页面进行自定义修改,在程序后台开启生 成功能,只要访问页面就会生成一个本地文件。当用户再次访问的时候就直接访问网站本地的页面,所以目标站点无法访问了也没关系,我们的站点依然可以访问, 支持伪静态、伪原创、生成静态文件、自定义替换、广告管理、友情链接管理、自动下载 CSS 内的图。
### 14B 模型本地部署 Wan2.1 文件保存方法 #### 工具准备与环境搭建 为了实现 Wan2.1 的本地部署并完成文件保存操作,需先准备好必要的工具和依赖项。具体来说: - 需要通过命令行从 Hugging Face 或 ModelScope 下载所需模型文件[^1]。 - 使用 Git 克隆官方仓库以获取项目源码及相关脚本[^2]。 #### 模型放置位置 下载后的 `safetensors` 文件应按照指定目录结构进行存储。对于 Wan2.1 的 14B 版本而言,主要涉及两个核心文件的正确配置: - 将 `wan2.1_i2v_480p_14B_fp16.safetensors` 放入路径: **`<ComfyUI_root>/models/diffusion_models/`** - 同时将 `clip_vision_h.safetensors` 存储至路径: **`<ComfyUI_root>/models/clip_vision/`**[^3]。 如果是在 Windows 平台上,则可以参照如下路径设置: ```plaintext D:\software\ComfyUI\models\diffusion_models\ D:\software\ComfyUI\models\clip_vision\ ``` #### 文件保存逻辑 在 ComfyUI 中运行 Wan2.1 模型时,其生成的结果通常会自动保存到预设的工作目录下。以下是具体的保存机制说明: - 默认情况下,生成的内容会被写入 `<ComfyUI_root>/outputs/` 路径下的子文件夹中。这些子文件夹可能按日期或任务类型进一步划分。 - 如果希望自定义保存路径,可以通过修改 ComfyUI 的配置文件或者调整 Python 脚本中的参数来实现。例如,在执行推理过程中传递额外选项以覆盖默认行为。 假设需要手动控制输出路径,可以在调用 API 或启动服务前加入类似以下代码片段: ```python import os output_dir = "./custom_output_path" os.makedirs(output_dir, exist_ok=True) # 设置全局变量或其他方式通知程序新目标地址 config['save_to'] = output_dir ``` 此外需要注意的是,某些特定功能模块可能会有独立的保存策略,因此建议查阅对应文档确认细节[^4]。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张涓曦Sea

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值