CellOT:基于神经最优传输学习单细胞扰动响应安装与使用教程
项目地址:https://gitcode.com/gh_mirrors/ce/cellot
1. 项目目录结构及介绍
以下是对CellOT
项目目录结构的概述及其主要文件和子目录的功能说明:
.
├── assets # 可能存放图标、示例数据图片等静态资源
├── cellot # 核心源代码目录
├── configs # 配置文件夹,用于存放实验或运行的各种配置设置
├── datasets # 数据集相关文件,可能包括数据预处理脚本或样本数据链接
├── results # 存放实验结果和输出数据
├── scripts # 辅助脚本集合,例如数据处理、实验运行脚本等
├── .gitignore # Git忽略文件,指定不应纳入版本控制的文件或模式
├── LICENSE # 开源许可协议文件,遵循BSD-3-Clause
├── README.md # 项目的主要说明文档,介绍了项目的目的、作者和快速入门指南
├── requirements.txt # 项目依赖列表,列出运行项目所需的Python包
└── setup.py # Python打包文件,用于安装项目作为库
2. 项目的启动文件介绍
启动CellOT
项目主要通过执行Python脚本或使用其提供的命令行接口(如果存在)。虽然直接的“启动文件”未明确提及,但典型的入口点可能是通过执行setup.py
来准备环境,并且用户需要编写自己的脚本来调用cellot
包中的功能或者利用潜在的主程序脚本(这在给定的信息中未详细说明)。
为了开始使用,您首先需要安装项目,这可以通过运行以下命令来完成,确保已安装了Conda环境:
conda create --name cellot python=3.9.5
conda activate cellot
conda update -n base -c defaults conda
pip install --upgrade pip
pip install -r requirements.txt
python setup.py install
之后,具体的启动流程将依据您的研究需求和数据处理逻辑而定制,通常涉及导入cellot
库中的相关模块并执行相应的函数或类方法。
3. 项目的配置文件介绍
配置文件通常存储于configs
目录下。尽管具体配置文件的内容没有详细展示,这些配置文件(.yaml
, .json
或特定的.py
)是用来定义模型参数、训练设置、数据路径等关键信息的。每个配置文件对应不同的实验设置或运行条件。用户可以根据需要修改这些配置文件,以适应不同的数据集或者实验要求。
举例来说,一个典型的配置文件可能包含网络结构设定、学习率、批次大小、训练轮数等超参数,以及数据加载器的配置。要在实际应用中使用配置文件,您需按项目文档指示读取配置并传递给相应的脚本或类实例。
请注意,以上是基于常规开源项目结构和提供的信息做出的通用指导。对于更详细的使用细节,应当参考项目官方的README.md
文件或进一步的文档说明。