CellOT:基于神经最优传输学习单细胞扰动响应安装与使用教程

CellOT:基于神经最优传输学习单细胞扰动响应安装与使用教程

项目地址:https://gitcode.com/gh_mirrors/ce/cellot

1. 项目目录结构及介绍

以下是对CellOT项目目录结构的概述及其主要文件和子目录的功能说明:

.
├── assets                  # 可能存放图标、示例数据图片等静态资源
├── cellot                  # 核心源代码目录
├── configs                 # 配置文件夹,用于存放实验或运行的各种配置设置
├── datasets                # 数据集相关文件,可能包括数据预处理脚本或样本数据链接
├── results                 # 存放实验结果和输出数据
├── scripts                 # 辅助脚本集合,例如数据处理、实验运行脚本等
├── .gitignore              # Git忽略文件,指定不应纳入版本控制的文件或模式
├── LICENSE                 # 开源许可协议文件,遵循BSD-3-Clause
├── README.md               # 项目的主要说明文档,介绍了项目的目的、作者和快速入门指南
├── requirements.txt        # 项目依赖列表,列出运行项目所需的Python包
└── setup.py                # Python打包文件,用于安装项目作为库

2. 项目的启动文件介绍

启动CellOT项目主要通过执行Python脚本或使用其提供的命令行接口(如果存在)。虽然直接的“启动文件”未明确提及,但典型的入口点可能是通过执行setup.py来准备环境,并且用户需要编写自己的脚本来调用cellot包中的功能或者利用潜在的主程序脚本(这在给定的信息中未详细说明)。

为了开始使用,您首先需要安装项目,这可以通过运行以下命令来完成,确保已安装了Conda环境:

conda create --name cellot python=3.9.5
conda activate cellot
conda update -n base -c defaults conda
pip install --upgrade pip
pip install -r requirements.txt
python setup.py install

之后,具体的启动流程将依据您的研究需求和数据处理逻辑而定制,通常涉及导入cellot库中的相关模块并执行相应的函数或类方法。

3. 项目的配置文件介绍

配置文件通常存储于configs目录下。尽管具体配置文件的内容没有详细展示,这些配置文件(.yaml, .json 或特定的.py)是用来定义模型参数、训练设置、数据路径等关键信息的。每个配置文件对应不同的实验设置或运行条件。用户可以根据需要修改这些配置文件,以适应不同的数据集或者实验要求。

举例来说,一个典型的配置文件可能包含网络结构设定、学习率、批次大小、训练轮数等超参数,以及数据加载器的配置。要在实际应用中使用配置文件,您需按项目文档指示读取配置并传递给相应的脚本或类实例。


请注意,以上是基于常规开源项目结构和提供的信息做出的通用指导。对于更详细的使用细节,应当参考项目官方的README.md文件或进一步的文档说明。

cellot Learning Single-Cell Perturbation Responses using Neural Optimal Transport cellot 项目地址: https://gitcode.com/gh_mirrors/ce/cellot

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

申芹琴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值